

Trabajo de diploma para Optar por el Título de Ingeniero en Geología

Título: Evaluación de las arcillas del depósito El Cobre como material cementicio suplementario.

Autor: Andy Rey García

Tutores: Prof. Ing. Luis Alberto Pérez García
Prof. Ing. Ángel Eduardo Espinosa Borges
Prof. Dr. C. Adrian Alujas Días

Moa, Holguín, Cuba 2022

Pensamiento.

"Si lo imposible todavía no se ha alcanzado, no hemos cumplido con nuestro deber" Manuel Álvarez Bravo

Dedicatoria

A mi abuelo, que encendió la llama de la curiosidad por esta vocación desde muy joven y a mi familia que siempre ha sido mi mayor apoyo.

Agradecimientos

Primeramente, a mi familia, por todos los valores que me han inculcado haciendo que desempeñe de una mejor manera esta carrera, por su apoyo, paciencia, amor e infinitos consejos. A mis amigos que siempre han estado ahí para mí, en especial Kuzco, Lázaro, Danayrys, Lenier y Laura. A mi pareja por su amor, comprensión y apoyo en los peores momentos. A mis profesores que han contribuido a lo largo de estos años en mi formación, tanto profesional como personal, en especial a mi "madrina" Bea y al profesor y tutor Luis Alberto. A todos mis compañeros de aula, por las experiencias vividas, los buenos y los no tan buenos momentos que nos hicieron sacar una enseñanza de todo. A todas las personas que durante estos años contribuyeron en mi formación, que ayudaron a que no me rindiera, a hacer la estancia más fácil en la universidad y a mi superación en todos los aspectos. A todos y cada uno gracias, infinitas gracias.

Resumen

La evaluación de la influencia de las características químicas y mineralógicas de las arcillas del yacimiento de El Cobre es la primera tarea a superar para emplearlas en la producción de materiales cementicios suplementarios. Las características químicas, térmicas y mineralógicas, de estás arcillas, fueron establecidas mediante técnicas de Difracción de Rayos X. Análisis Termogravimétricos y Fluorescencia de Rayos X. Se calcularon las pérdidas por ignición para determinar el contenido de caolín equivalente. La reactividad del material, activado térmicamente, fue determinada mediante el método de solubilidad alcalina (Cabrera et al., 2018) y calorimetría isotérmica R³. (Avet & Scrivener, 2016) El comportamiento de las prestaciones del material se estimó mediante el método de Francois Avet (Avet & Scrivener, 2016) y se corroboró con ensayos de resistencia a la compresión, norma DIN EN 196-1 2005-05, con una muestra patrón de arcillas activadas térmicamente a 800°C. A pesar de tener > 20% de Al2O3, siendo este un contenido relativamente alto y favorable para los MCS (Almenares Reyes, 2017) se determinó que el yacimiento El Cobre no posee buenas potencialidades para utilizarse como fuente de materia prima para MCS.

Palabras claves: Arcillas, materiales cementicios suplementarios, puzolanas

Abstract

The evaluation of the influence of the chemical and mineralogical characteristics of the clays of the El Cobre deposit is the first task to overcome in order to use them in the production of supplementary cementitious materials. The chemical, thermal and mineralogical characteristics of these clays were established using X-Ray Diffraction, Thermogravimetric Analysis and X-Ray Fluorescence techniques. Ignition losses were calculated to determine the equivalent kaolin content. The reactivity of the material, thermally activated, was determined by the alkaline solubility method (Cabrera et al., 2018) and isothermal calorimetry R3 (Avet & Scrivener, 2016). The performance behavior of the material was estimated using the Francois Avet method (Avet & Scrivener, 2016) and corroborated with compressive strength tests DIN EN 196-1 2005-05 standard, with a standard sample of activated clays. thermally at 800°C. Despite having >20% Al2O3, this being a relatively high and favorable content for MCS (Almenares Reyes, 2017), it was determined that the El Cobre deposit does not have the general potential to be used as a source of raw material for MCS.

Índice

Resumen	6
Abstract	7
1.Introducción	1
Marco Teórico Contextual	4
Proceso de producción de CPO	6
Dentro del horno existen seis etapas	7
Producción de Cemento Portland Ordinario (CPO) en Cuba	8
Estrategias para disminuir las afectaciones al medio ambiente de la proc cemento	
Materiales Cementicios Suplementarios	12
Evolución de los materiales cementicios suplementarios en Cuba	14
Definición y clasificación de las puzolanas	16
Puzolanas naturales	17
CAPITULO 1 CARACTERÍSTICAS GEOGRÁFICAS Y ECONÓMICAS DE LA REG	GIÓN24
1.1. Situación Geográfica	24
1.2. Relieve	24
1.3. Clima	25
1.4. Suelos	25
1.9. Características geológicas de la región y del área de estudio	26
1.9.1. Características geológicas	26
1.9.2 Estratigrafía	28
1.9.3 Vulcanismo	29
1.9.4 Tectónica	29
2.MATERIALES Y MÉTODOS	32
2.1. Etapas de la investigación	32
2.2. Obtención de las muestras	32
2.3. Trabajos de laboratorioiError! Marcador no	definido.
2.3.1. Preparación de las muestras	33
2.3.2. Preparación para Difracción de Rayos X	33
2.3.3. Muestras para Fluorescencia de Rayos X	35
2.3.5. Cálculo de Pérdidas por Ignición	35
2.3.6. Análisis Térmico Diferencial	36
2.3.7. Determinación de Caolín Equivalente (KE)	36
2.3.8. Determinación de alúmina y sílice disueltos en álcalis	37
2.3.9. Reactividad puzolánica por el método de Calorimetría Isotérmica .	37
2.3.10. Resistencia a la compresión por el método de mortero normaliza	do38

2.3.11. Determinar la resistencia a la compresión en morteros para una dosificación de PPC30 a partir del método de correlación de François Avet38
3.ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS39
3.1 Resultados del análisis químico y mineralógicos39
3.2.Resultados del análisis térmico diferencial y cálculo del caolín equivalente 41
3.3.Influencia de la temperatura y la composición mineralógica en la reactividad puzolánica por medio de calorimetría isotérmica y solubilidad alcalina44
3.4.Resultados de la correlación de resistencia a la compresión según el contenido de caolín equivalente y resistencia a la compresión46
4.CONCLUSIONES49
5.RECOMENDACIONES
6.REFERENCIAS BIBLIOGRÁFICAS51

1. Introducción

El cemento Portland se encuentra entre los materiales más empleados y con mayor nivel de producción a escala mundial (Müller & Harnish, 2008) es uno de los principales contribuyentes al desarrollo de la humanidad y es considerado como el material más usado en la industria de la construcción. Sin embargo, los procesos de fabricación demandan altas cantidades de energía (Cisnero, 2010), y provocan grandes volúmenes de emisiones de gases de efecto invernadero (EIA, 2013), factores que influyen negativamente en sus costos y sostenibilidad ambiental.

Durante el proceso de producción, del cemento Portland Ordinario, alrededor del 60% de las emisiones de CO₂ están asociadas a la descomposición de la caliza durante la obtención del clínquer (Martínez Conde & Hurtado Cardona, 2014). Desde el punto de vista técnico-económico la solución de mayor potencial, a mediano y corto plazo para reducir las emisiones de CO₂, es sustituir parcialmente el clínquer por materiales cementicios suplementarios (MCS) (Cembareau, 2013).

La sustitución parcial del clínquer por materiales cementicios suplementarios permite mantener o incrementar las propiedades físico-mecánicas y la durabilidad de los productos finales (Valdés Uribe, 2019). Al mismo tiempo, se alcanza una disminución de los costos de producción y de las emisiones de gases de efecto invernadero a la atmósfera (Valdés Uribe, 2019).

Entre la amplia variedad de materiales cementicios suplementarios que pueden ser empleados para reemplazar parte del clínquer en el aglomerante (Ferrara et al., 2019; Naranjo Quintero et al., 2018; Quevedo Gómez & San José Lombera, 2018, Xargay, 2019 #12; Sgarlata et al., 2022), existe creciente interés en el empleo de las arcillas activadas térmicamente (Díaz et al., 2018; Tironi, Trezza, Irassar, et al., 2012; Tironi, Trezza, Scian, et al., 2012). Dentro de los minerales arcillosos, sobresalen los del grupo de la caolinita por la alta reactividad puzolánica de sus productos de calcinación y sus relativamente bajas temperaturas de activación (Tironi, Alejandra et al. 2012; Tironi et al. 2014; He,

Makovicky y Osb 1994; Alujas et al. 2015; Alujas-Díaz et al. 2010; Alujas Díaz et al. 2010; Fernandez, Martirena y Scrivener 2011).

En el territorio cubano se conoce de la existencia de varios depósitos minerales relacionados con la caolinita, y con anterioridad, varios de ellos han sido estudiados como fuentes de materiales cementicios suplementarios, donde sobresalen Río del Callejón, en la Isla de la Juventud (Rodríguez Suárez, Hernández Flores y Rodríguez Acosta 2017), McKinley, Pino, Toño, Brooklyn y Santa Isabel en la zona occidental; Hortensia, Pontezuela, Gaspar en la zona central (Arcial Carratalá y Alujas-Diaz 2015) y Bañadero en la zona centro-oriental; Caisimú, Dumañuecos y Cayo Guam (Hevia Delgado y ONRM 1983; Martín Cortés et al. 2004; Espinosa Borges et al. 2019; Espinosa-Borges et al. 2022), Mir (Hidalgo Suárez et al. 2022) y Cayo Guam (Cruz Ramírez et al. 2019; Hidalgo Suárez et al. 2019) en la zona oriental.

En el contexto de estos estudios, surge el Proyecto TTP 1934 del Servicio Geológico de la República de Cuba, que pretende la caracterización de arcillas caoliníticas en el oriente del país, desde el enfoque del ambiente geológico de formación. En general se pretende establecer la influencia de la génesis en el desarrollo o no de reactividad puzolánica de los productos de calcinación.

Este proyecto, así como el trabajo doctoral asociado, son el resultado del esfuerzo e investigaciones conjuntas de La Universidad Central de las Villas y la Universidad de Moa, así como de instituciones extrajeras como son el Instituto de Tecnología de Karlsruhe en Alemania y la Universidad Autónoma de México.

Por tanto, la selección del Yacimiento El Cobre, responde a un interés académico, teniendo en cuenta que es una manifestación caolinítica asociada al arco volcánico del Paleógeno cubano, donde ha ocurrido una importante alteración hidrotermal a partir de un depósito de sulfuros masivos vulcanógenos de tipo bimodal máfico.

Con base a lo anterior se platea como **problema científico**: ¿Cómo se relacionan las características geológicas, geoquímicas y mineralógicas de las arcillas caoliníticas del yacimiento El Cobre y su posible utilización para la producción de cemento de bajo carbono?

Objetivo general: Evaluar la influencia de las características geológicas, geoquímicas y mineralógicas de las arcillas caoliníticas del yacimiento El Cobre para su utilización como materia prima en la producción de materiales cementicios suplementarios.

Hipótesis: Si se evalúan las arcillas caoliníticas del yacimiento El Cobre teniendo en cuenta las características geológicas, geoquímicas y mineralógicas se establecerán las perspectivas de éstas, para ser utilizadas como fuente de materia prima en la producción de materiales cementicios suplementarios.

Objetivos específicos:

- Establecer el estado del arte acerca del uso de arcillas caoliníticas como materiales cementicios suplementarios en la República de Cuba.
- Caracterizar química y mineralógicamente las arcillas caoliníticas del yacimiento El Cobre.
- Valorar las pérdidas de masa por deshidroxilación y el contenido de caolín equivalente.
- Evaluar la influencia de la temperatura de calcinación y la composición mineralógica en la reactividad puzolánica.
- Evaluar las potencialidades de las arcillas caoliníticas del yacimiento para su uso como material cementicio suplementario.

Objeto: Las arcillas caoliníticas del yacimiento El Cobre.

Campo de acción: Estudio de las propiedades geológicas, geoquímicas y mineralógicas de las arcillas caoliníticas del yacimiento El Cobre.

Marco Teórico Contextual

El cemento es un material inorgánico, no metálico, finamente molido que cuando se mezcla con agua y áridos forma una pasta que fragua y endurece (morteros y hormigones). Este endurecimiento hidráulico se debe principalmente a la formación de silicatos cálcicos hidratados como resultado de una reacción entre el agua y los constituyentes del cemento (Almenares Reyes, 2017).

Esta propiedad de conglomerante hidráulico le ha convertido en un material básico de construcción, imprescindible para la edificación y la realización de infraestructuras. El cemento Portland fue patentado en 1824, y es el cemento más ampliamente empleado en la actualidad en la fabricación del hormigón y su consumo y producción de están directamente relacionados con la marcha del sector de la construcción y, por tanto, con la coyuntura económica general (Almenares Reyes, 2017).

El comercio mundial de cemento supone tan sólo el 6%-7% de la producción, en su mayoría transportado por mar. Hay generalmente poca importación y exportación de cemento, principalmente como resultado del alto costo del transporte por carretera, (los suministros de cemento por carretera suelen ser por lo general a distancias no mayores de 150 km). Aunque estos costes han hecho que históricamente los mercados del cemento hayan sido predominantemente locales, la progresiva globalización de la economía y la consiguiente desaparición de las trabas al comercio internacional suponen un reto para la fabricación de cemento en la Unión Europea, que sufre la presión de importaciones a bajo precio desde países de la cuenca mediterránea y de Europa del este, e incluso desde países asiáticos (Rodríguez Suárez et al., 2017).

Su proceso de producción es considerado el responsable de entre 5-8 % de las emisiones globales de dióxido de carbono (CO_2) a la atmósfera debido a los elevados volúmenes de producción a escala global, además de que demuestra que puede ser una industria altamente consumidora de energía, con alrededor de 6 % del consumo de energía total en el sector industrial (Almenares Reyes, 2017).

Las principales razones por las que el cemento promete seguir siendo el aglomerante más importante en el sector de la construcción, es debido a que las

materias primas para su producción son geológicamente extensas y abundantes, y su agotamiento es poco probable en los próximos años (Rodríguez Suárez et al., 2017).

La reducción del factor de clínquer en el cemento, a través del empleo de Materiales Cementicios Suplementarios (MCS) es una de las alternativas más prometedoras, para su desarrollo a corto y a mediano plazo, entre las definidas por la industria del cemento para lograr la sostenibilidad ecológica y medio ambiental de su producción. Diferentes subproductos industriales y materiales naturales pueden ser utilizados en la sustitución parcial de clínquer en el cemento. De este modo se reducen los volúmenes de clínquer en el aglomerante y el consumo específico de energía, y se logran mitigar las emisiones de CO₂ asociadas al proceso de producción. (Almenares Reyes, 2017).

El proceso de obtención del cemento Portland se encuentra montado sobre la base de la explotación intensiva de recursos no renovables (materias primas y combustibles), y se emiten a través del mismo significativos volúmenes de gases de efecto invernadero, sobre todo en los procesos asociados a la producción de clínquer, el principal componente del cemento Portland (CPO) (Martirena, 2004). Para solucionar los problemas medioambientales asociados a la producción de cemento Portland.

La industria del cemento ha definido como medidas fundamentales mejorar la eficiencia energética, el uso de desechos como combustibles fósiles y la reducción de la relación clínquer/cemento en el aglomerante (Castillo et al., 2010).

El proceso de producción de cemento demanda grandes cantidades de energía, básicamente en la combustión de las materias primas en el horno y en la molienda, para reducir hasta polvo el clínquer. Aunque el requerimiento mínimo teórico de energía del proceso es de 1.75 ±0.1 MJ por Kg. de cemento producido (Hendriks et al., 1998) se estima que la producción de 1 Kg. de clínquer requiere, de forma efectiva, entre 3.2 y 6 MJ de energía térmica, en dependencia del tipo de proceso utilizado.

La reducción de los consumos de clínquer para la producción de diversos y nuevos tipos de cemento, se ha convertido en la temática de mayor interés por parte de productores e investigadores (Castillo et al., 2010). Sobre la base de esto se desarrolla intensamente las investigaciones de nuevas formulaciones de aglomerantes con altos volúmenes de sustitución de clínquer, buscando al mismo tiempo mantener o mejorar las prestaciones físico-mecánicas y la durabilidad (Schneider et al., 2011).

Proceso de producción de CPO

El proceso de producción del cemento está compuesto de 4 etapas principales:

- 1. Extracción, preparación y molienda de las materias primas
- 2. Dosificación y homogenizado de la mezcla cruda
- 3. Cocción (obtención del clínquer)
- 4. Molienda del clínquer (obtención del cemento)

Inicialmente todo el proceso comienza con la extracción de las materias primas en la cantera, donde los minerales contienen óxido de calcio, óxido de silicio, óxido de aluminio, óxido de hierro, etc. Posteriormente son transportadas a la planta donde son trituradas hasta 25 cm, seguido de una verificación de su composición química.

A continuación, se realiza una segunda trituración hasta 2 mm aproximadamente, se analizan sus propiedades y se pre homogeniza la muestra. Luego del procesamiento de las materias primas en función de sus características y del método de producción empleado (seco, semi-seco, húmedo), las mismas se someten a la cocción en un horno.

La calcinación de la mezcla cruda obtenida tanto por vía seca como por la húmeda, se realiza generalmente en hornos giratorios. Los hornos verticales se usan a veces sólo para el procedimiento seco.

Los grandes hornos giratorios, de 150 – 250 m de longitud, se instalan con una cierta pendiente para posibilitar que el material vaya penetrando dentro del mismo, obligado además por su rotación, con una velocidad entre uno y dos revoluciones por minuto (Betancourt Rodríguez, 2017).

En los hornos giratorios, la mezcla de materias primas se suministra por la parte superior, que es la más fría, mientras que en la parte inferior se ubican los quemadores que pueden funcionar con distintos tipos de combustible, según el tipo (petróleo, carbón, petcoke, gas, etc.). Dichos quemadores producen una llama en forma de dardo con una longitud entre 15-30 m.

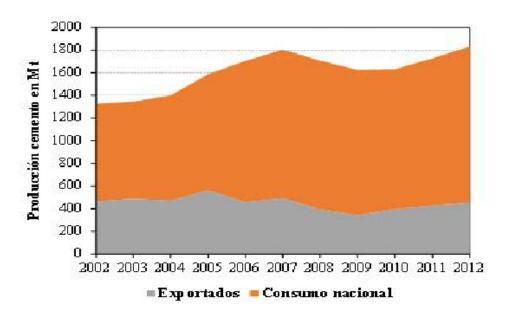
La materia prima cruda, la cual se suministra en forma de polvo o de un lodo plástico (procedimiento seco y húmedo respectivamente), va sufriendo distintos procesos según se eleva la temperatura al transitar por las distintas secciones del horno.

Dentro del horno existen seis etapas

- 1. La desecación hasta los 200 ° C es donde las materias primas pierden la humedad.
- 2. El calentamiento de los 200 hasta los 700 ° C provoca la quema de impurezas orgánicas.
- 3. La calcinación de los 700 hasta los 1100 º C los carbonatos se disocian y los minerales arcillosos se descomponen.
- 4. La formación de aluminatos y ferritos ocurre de los 1100 hasta los 1250 º C.
- 5. La formación del clínquer ocurre de los 1250 hasta los 1450 ° C, a esta temperatura el silicato dicálcico (belita) y la cal reaccionan formando el silicato tricálcico (alita), el cual constituye el principal componente del clínquer.
- 6. El proceso de enfriamiento ocurre en dos etapas, primero antes de salir del horno (1300 hasta 1000 ° C) se forma por completo la estructura del clínquer, donde la alita y la belita son sus minerales fundamentales; y la segunda etapa al salir del horno (1000 hasta 200 ° C) posterior a esto se enfría y se almacena durante 2 semanas aproximadamente. Todo este proceso culmina con una molienda conjunta del clínquer, yeso y adiciones en equipos mecánicos que someten dicha mezcla a impactos metálicos o fuerzas de compresión elevadas, ya sea por prensas de rodillos, molinos verticales de rodillos, molinos de bolas o molinos horizontales de rodillos. Luego de la molturación ya se obtiene el producto final, "el cemento", el cual se despacha para su comercialización y uso, ya sea a granel, en sacos o en big bags (Betancourt Rodríguez, 2017). Durante la elaboración del cemento, es la producción de clínquer la responsable de ser la de mayor consumo de energía y a su vez la de mayores emisiones CO₂ a la

atmósfera. Ello ha llevado a disminuir el contenido de clínquer a partir del empleo de materiales puzolánicos.

Producción de Cemento Portland Ordinario (CPO) en Cuba:


La industria del cemento en Cuba comenzó a finales del siglo XIX cuando se inauguró en La Habana la primera fábrica de cemento gris tipo Portland de Iberoamérica, el 7 de julio de 1895. Esta planta tenía una capacidad de 20 t/día o sea 6 mil t/año (por vía seca), lo cual bastaba para abastecer la demanda nacional, se comercializaba con la marca "Cuba" (González Castellanos & Batista González, 2009).

A principios del siglo XX comienza su producción la segunda fábrica de cemento en las cercanías del río Almendares, con una capacidad de unas 60 000 ton por año. Las producciones se realizaban con tecnologías aún muy rústicas y muy poco productivas, pero que podían abastecer la demanda nacional.

Tras el triunfo de la Revolución el país invirtió 465 millones de pesos en la industria del cemento lo que multiplicó la capacidad de producción instalada en 5 veces más a la existente hasta 1959 (Martirena, 2004). A partir de la década de 1980 se comenzaron a utilizar las puzolanas como sustitutas parciales del clínquer del CPO en Cuba. Todo ello fue posible ya que en nuestro país existen numerosos yacimientos de rocas zeolitizadas y de vidrio volcánico diseminado en todo el territorio nacional los cuales generalmente muestran una elevada actividad puzolánica.

Dichas puzolanas fueron utilizadas como adiciones para producir diferentes tipos de CPO, las cuales se conocen como PP-350, PP-250 y CA-160 (Rabilero, 1993). En la década de 1990 con la caída del Campo Socialista nuestro país tuvo que centrarse en alternativas más económicas que la producción de cemento en grandes plantas.

En este momento es que surge el llamado "Cemento Romano" el cual comenzó a producirse en Santiago de Cuba. Desde 1996 comenzó un período de recuperación para la industria del cemento Portland en Cuba debido al incremento de las inversiones nacionales en zonas estratégicas como el turismo y a la inserción de Cuba en el mercado caribeño, ver figura 1.

Figura 1: Muestra cómo ha evolucionado la producción de cemento en Cuba entre 2002 y 2012 (ONEI, 2012)

Actualmente Cuba cuenta con 6 fábricas, con una capacidad disponible para producir Cemento Gris de 3,564 millones de toneladas anuales y Cemento Blanco de 0,08 millones de toneladas anuales, algunas por vía seca y otras por vía húmeda (Gallo, 2010) .Estas fábricas están ubicadas en El Mariel y Artemisa provincia Artemisa, Guaos en Cienfuegos, Siguaney en Sancti Spíritus, Nuevitas en Camagüey y en Santiago de Cuba como se puede apreciar a continuación en la Figura 2.

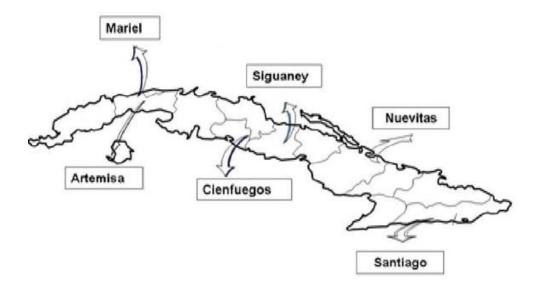


Figura 2: Distribución de las fábricas de cemento en Cuba (Siverio Fernández, 2016).

Tabla 1: Producción de cemento gris por años en millones de toneladas (ONEI, 2022)

Año	Mt
2017	1 430,6
2018	1 590,2
2019	1 334,6
2020	1 015,1
2021	817,1

Estrategias para disminuir las afectaciones al medio ambiente de la producción de cemento

En la elaboración del cemento Portland, la producción de clínquer representa el mayor consumo de energía y es responsable también de los mayores volúmenes de emisiones de CO₂, ya que más del 50% del CO₂ liberado se debe a la descomposición de la caliza durante el proceso de fabricación del clínquer (Castillo et al., 2010). Se estima que por cada tonelada de cemento producida se emite entre 0.65 – 0.90 toneladas de CO₂ (Habert et al., 2010), lo que, llevado a los datos de producción anual, sitúan a la industria del cemento como responsable de la emisión de entre 5 – 8 % del CO₂ a escala global (CSI, 2010).

Según la World Business Council for Sustainable Development (WBCSD) para el 2050 habrá un incremento de la producción que alcanzará los 4400 millones de toneladas de cemento y otros pronósticos sitúan la demanda por encima de los 5000 millones. Este incremento elevará a su vez los niveles de emisiones de CO₂, si se mantienen las condiciones de producción actuales (Vizcaíno, 2014).

Debido a las emisiones de CO₂ y las grandes cantidades de energía que demanda la fabricación de cemento que influyen significativamente en sus costos de producción y sostenibilidad ambiental se hace necesario poner en práctica estrategias que contribuyan al crecimiento de su producción de manera sustentable.

Entre estas se encuentra la mejora en la eficiencia de los procesos, el uso de fuentes alternativas de combustibles y la reducción del factor de clínquer (Castillo et al., 2010). Como se mencionó anteriormente una de las nuevas estrategias que se vienen desarrollando es la mejora en la eficiencia de los procesos de producción de cemento. Con la transición tecnológica del proceso húmedo al semi-húmedo, semi-seco o seco, se puede lograr una reducción considerable en los consumos energéticos requeridos durante la combustión de las materias primas.

Se estima que los procesos húmedos consumen como promedio entre 5.3 – 7.1 GJ/t de clínquer y el proceso seco consume entre 3.2 – 3.5 GJ/t de clínquer. En el proceso de molienda también se han evidenciado algunas innovaciones como son el desarrollo e implementación de nuevos tipos de molinos como el de rodillos de alta presión y el de rodillos horizontales donde se emplea de un 20 – 50 % menos de energía eléctrica que con los tradicionales molinos de bolas (Vizcaíno, 2014).

Otra de las medidas que se han puesto en práctica en la industria del cemento es el uso de combustibles alternativos ya que más del 90 % de la energía usada en la producción de cemento procede originalmente de la quema de combustibles. La fuente energética más usada para la producción de cemento la constituye el carbón, que por su composición es muy contaminante, por lo que al reducir el contenido de carbón de los combustibles se logra reducir las emisiones de CO₂. Una práctica de ello es el empleo de gas natural, pero los precios de este último se han elevado de manera sostenida en el mercado internacional y no son competitivos con los precios del carbón, además de ser una fuente altamente demandada por otros sectores (Cembareau, 2013).

La utilización de productos de desecho provenientes de otras industrias como combustibles alternativos ofrece una gran oportunidad ante esta problemática. Estos pueden ser gaseosos como lo son el gas de refinería, los gases del proceso de craqueado del petróleo, pueden ser líquidos como los solventes libres de halógeno, aceites minerales o pueden ser sólidos como los residuos de la agricultura, neumáticos y plásticos.

El uso de estos combustibles no solo es menos costoso, sino que puede reducir las emisiones de CO₂ de 0.1 – 0.5 toneladas por tonelada de cemento, comparado con los combustibles fósiles, además de contribuir al reciclaje de residuales industriales (Vizcaíno, 2014).

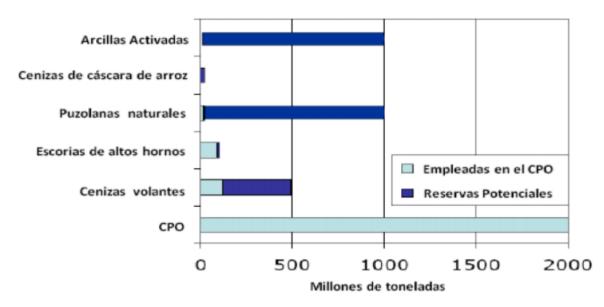
La reducción del factor de clínquer en el cemento a través del empleo de otros productos reactivos constituye una de las líneas de trabajo establecidas por la industria del cemento en su camino hacia la sostenibilidad ambiental. Del total de emisiones de CO₂, aproximadamente el 40 % proviene de la quema de combustibles y el consumo de energía eléctrica, mientras que el 60 % restante es causado por la descarbonatación de las materias primas durante el proceso de fabricación del clínquer (CSI, 2010). Los materiales que se emplean como sustitutos del clínquer y que reaccionan con hidróxido de calcio son llamados comúnmente Materiales.

Materiales Cementicios Suplementarios

La definición general de MCS abarca un gran número de materiales, que varían ampliamente en término de origen, composición química y mineralógica y características morfológicas. Los MCS comprenden aquellos materiales que muestran comportamiento hidráulico, que se endurecen en presencia de agua para formar productos cementicios en una reacción de hidratación (Snellings, 2011) y aquellos que muestran comportamiento puzolánico.

La American Standard and Testing Materials (ASTM) define como materiales puzolánicos a aquellos materiales silíceos o aluminio-silíceos que por sí mismos posee poca o ninguna propiedad cementicia, pero finamente divididos y en presencia de agua, reaccionan químicamente con el hidróxido de calcio y forma compuestos de propiedades cementicios (Vizcayno et al., 2010).

Cuanto mayor sea el contenido de sílice amorfa y menor la proporción de impurezas cristalinas, más reactiva resultará la adición (Baronio & Binda, 1997). El uso de tales materiales, sin ningún proceso adicional en lo que a producción de clínquer se refiere, lleva a una reducción significativa en las emisiones de CO₂ por tonelada de materiales que componen el cemento a obtener (en la molienda, mezclado y transporte, el uso de energía es muy pequeña comparada con el


proceso del clinquerización) y también es un medio para utilizar derivados de procesos industriales (Hooton, 2011).

Las puzolanas se clasifican en dos grandes grupos: naturales y artificiales, aunque existe un grupo intermedio constituido por puzolanas naturales que necesitan tratamientos térmicos de activación. En Este último grupo se encuentran los materiales arcillosos que permiten la formación de compuestos puzolánicamente activos en dependencia de su estructura, constitución mineralógica, composición química, temperatura y tiempo de cocción y de enfriado (Massazza, 1993).

A través de la combinación de las puzolanas y el cemento Portland, el hidróxido de calcio del sistema reacciona con los aluminosilicatos presentes en ella durante el proceso de hidratación, formando compuestos cementicios. El empleo de esta combinación se manifiesta a través de varias características fundamentales: el relativamente lento desarrollo de la resistencia mecánica, la disminución de la liberación del calor por masa de aglomerante, la disminución del contenido del hidróxido de calcio a través de la reacción puzolánica y el refinamiento de la estructura de poros, que trae consigo el incremento de la durabilidad y la resistencia mecánica.

El lento desarrollo de la reacción puzolánica permite que los productos que se generan en la misma rellenen de forma muy eficiente los espacios capilares que quedan después de la hidratación de los componentes del cemento (Quintana, 2005).

La mayor parte de los materiales puzolánicos empleados lo constituyen las puzolanas de origen artificial: subproductos del sector industrial como las escorias de altos hornos (subproducto de la industria siderúrgica), las cenizas volantes (subproducto de la quema del carbón en las plantas de generación eléctrica), y el humo de sílice (subproducto de la producción de silicio y ferrosilicio). Pero existe un grupo poco explotado, el cual posee abundantes reservas, como es el caso de las puzolanas naturales, la ceniza de la cáscara de arroz y las arcillas activadas térmicamente (Martirena, 2004) y (Castillo et al., 2010), ver Figura 3.

Figura 3: Empleo de materiales puzolánicos en la sustitución parcial del CPO (Scrivener, 2007).

El factor de reducción de clínquer es limitado por la reducción de la resistencia, sobre todo a edades tempranas y algunos MCS provocan un incremento en la demanda de agua, que tiene un efecto negativo en la geología. De acuerdo a las especificaciones de la ASTM C61803 para cenizas volantes y puzolanas naturales o artificiales y su empleo en hormigones, la composición química debe ser tal que la suma de los óxidos de Si, Al y Fe expresados como por ciento en masa, sea superior al 70% (Castillo et al., 2010).

A pesar de los efectos mencionados anteriormente, el impacto que causa la utilización de estos materiales con respecto a la reducción de las emisiones de CO₂ y la posibilidad de aumentar los volúmenes de producción de cemento sin grandes costos de inversión asociados, el empleo de MCS como sustitutos del clínquer en la producción de cementos mezclados constituye una de las mejores alternativas para contrarrestar el daño al medio ambiente en nuestro país (Martirena Hernández, 2011).

El aumento de los niveles de sustitución de clínquer ha estado liderado por las regiones con economías emergentes, como Latinoamérica, India y China, que se encuentran por encima de la media mundial (Vizcaíno, 2014).

Evolución de los materiales cementicios suplementarios en Cuba

Desde la época colonial en nuestro país se comenzaba a utilizar la roca zeolita como material de construcción en las edificaciones de la barriada del Vedado.

como consecuencia de la crisis energética durante la Segunda Guerra Mundial. Las rocas zeolíticas de importancia industrial en Cuba data de la década del 70, donde Coutin y Brito publicaron los resultados de los estudios realizados durante varios años en Cuba oriental y central, y mencionaron la presencia de cuatro zeolitas: clinoptilolita, mordenita, heulandita y analcima y tres más: estilbita, thomsonita y laumontita rellenando vetillas, grietas y poros en rocas efusivas y piroclásticas.

A partir de 1972 se acometió la elaboración de un proyecto técnico-económico de búsqueda y explotación de zeolitas en Villa Clara y aunque a escala mundial no existía una metodología económica de evaluación de este tipo de yacimiento, en 1981 el colectivo de técnicos cubanos culminó el primer informe geólogo sobre reservas industriales y los recursos pronósticos. Esta determinación de reservas industriales, como tales, fueron las primeras que se calcularon en todo el campo socialista. Los yacimientos de zeolita cubanos son de alto rendimiento en clinoptilolita y modernita, llegando en algunos casos a más de 90%.

En Cuba se conocen más de 25 yacimientos y manifestaciones de zeolitas naturales, distribuidas a todo lo largo y ancho del país. De acuerdo con datos de la Oficina Nacional de Recursos Minerales del Ministerio de la Industria Básica, estos yacimientos se encuentran distribuidos prácticamente en todo el territorio nacional: Pinar del Río, La Habana, Villa Clara, Cienfuegos, Camagüey, Las Tunas, Holguín, Granma, Santiago de Cuba y en Guantánamo.

El periódico Juventud Rebelde en el artículo ("Zeolita: ¿Dónde está el mineral del siglo ?," 2007) destaca que se han estudiado a profundidad 16 yacimientos que totalizan unos 20,9 millones de toneladas de recursos medidos, 69,95 millones de toneladas en recursos indicados y 214,61 millones de toneladas en recursos inferidos.

Existen experiencias de la explotación de fuentes de materiales puzolánicos en la isla, como las cenizas de bagazo y paja de caña para la fabricación de aglomerantes alternativos (Martirena, 2004). Las investigaciones llevadas a cabo por (Fernández, 2009), (Alujas Díaz, 2010), (Castillo et al., 2010), reportan el potencial puzolánico que ofrece la activación de arcillas cubanas

multicomponentes con bajos contenidos de caolinita para la fabricación de un aglomerante con rendimiento similar al cemento Portland.

Sin embargo, los datos del Instituto de Geología y Paleontología consideran las reservas de arcillas caoliníticas como bajas, poco más de 65 MMt, pero su potencial no ha sido debidamente investigado, pues los cálculos han estado limitados a las características demandadas por las industrias de la cerámica y para la producción de cemento blanco (Batista et al., 2013), que requieren de depósitos de arcillas de alta pureza de caolinita y/o bajo contenido de hierro.

Más reciente se ha reportado la activación térmica de arcillas multicomponentes y la producción de un aglomerante con solo 50 % de clínquer mezclado con 30 % de arcilla calcinada y 15 % de caliza molida que mostró un comportamiento similar el cemento PP-35 y a menor costo que este (Vizcaíno, 2014).

El estudio de nuevas fuentes de materiales arcillosos con bajos contenidos de caolinita, material ampliamente diseminado y de menor competencia de utilización con otras industrias de mayor valor agregado, resulta una importante alternativa para suplir la demanda cemento, disminuir sus costos, mitigar las emisiones CO₂ de su producción, y en la medida de lo posible aprovechar las tecnologías existentes sin grandes inversiones. Extender estos estudios permite, además, tener un mayor grado de conocimiento de las reservas existentes en todo el país, vinculado particularmente al empleo de estos materiales arcillosos con características adecuadas para su uso como materiales cementicios suplementarios.

Definición y clasificación de las puzolanas

Los materiales puzolánicos son una subcategoría dentro de los MCS. Se define como puzolanas a los materiales inorgánicos, naturales o artificiales, silíceos o sílico-aluminosos con pequeñas cantidades de calcio, magnesio, hierro, potasio y sodio, que por sí solos poseen poco o ningún valor cementicio. Están conformadas por partículas finamente divididas, amorfas o de muy pobre cristalinidad, que al entrar en contacto con un medio húmedo y a una temperatura ambiente, reaccionan químicamente con el hidróxido de calcio libre del proceso de hidratación del cemento, formando silicatos dicálcicos hidratados (tobermorita) y aluminatos dicálcicos hidratados (gehlenita), encargados de la

mayor parte de las propiedades físicas, químicas y mecánicas de las pastas de cemento (Tironi, 2013). En la actualidad, es también aceptada la clasificación basada en su origen (Massazza, 1976). En este sentido se clasifican en dos categorías fundamentales: aquellas que poseen origen natural y las artificiales creadas por el hombre. (Papadakis & Tsimas, 2002) y (Samanta & Chatterjee, 1981).

Puzolanas naturales: Las puzolanas naturales son las rocas existentes en la naturaleza que no precisan para su empleo nada más que la molienda, siendo característico de ellas que en su composición química predomine la sílice, el aluminio y el hierro. Las mismas no están distribuidas uniformemente en el planeta, pero hay varias zonas donde estos materiales son abundantes, en especial en el llamado "cinturón de fuego" (Martirena, 2004).

Según (Snellings, 2011) y (Ramezanianpour, 2014), las cenizas volcánicas y tobas zeolíticas, vidrio volcánico inalterado, pumitas o piedra pómez, sílice opalina y tierras diatomeas, son los ejemplos más comunes de puzolanas naturales. Aunque se reporta que los recursos identificados y no identificados de estas puzolanas exceden los miles millones de toneladas en el mundo (U.S., 2017), su distribución no es homogénea (Scrivener, 2007).

Los depósitos de cenizas volcánicas se encuentran donde hay o recientemente hubo actividad volcánica, por ejemplo, en el Mediterráneo, en el África central y oriental, y en la región del Pacífico. La forma natural de estos depósitos varía bastante al igual que su reactividad puzolánica.

Normalmente no requieren calcinarse de nuevo y, si se tiene la suerte de encontrarla ya en forma de polvo, no habrá necesidad de molerla. Las puzolanas volcánicas son explotadas comercialmente en varios países, por ejemplo: Alemania, Italia, Kenya, Rwanda, Vanuatu e Indonesia.

La distribución geográfica y calidad de las puzolanas naturales comúnmente empleadas también varían considerablemente, y su demanda en otros campos e industrias distintas a las del cemento también afecta su disponibilidad. En Cuba existe una amplia disponibilidad de estos materiales, pero debe señalarse que el desempeño físico – mecánico de los cementos con estas adiciones a edades tempranas es generalmente bajo, aunque se pueden alcanzar mayores

prestaciones si la finura de estos se incrementa (South & Hinczak, 2001) y (Rosell, 2010).

Otro de los materiales naturales que ha sido introducido como material cementicio suplementario en pequeñas cantidades es la caliza pulverizada sin calcinar (Ramezanianpour, 2014) (Damtoft et al., 2008). Todas las propiedades de las puzolanas naturales y en particular aquellas que las hacen especialmente aptas para su aprovechamiento en la industria del cemento, dependen fundamentalmente de su composición y de su textura, las cuales a su vez están íntimamente relacionadas con su origen y formación (Salazar, 2002).

Puzolanas artificiales: Las puzolanas artificiales más utilizadas son las cenizas volantes (flyash (FA), las escorias de fundición (blastfurnaceslag (BFS) y la microsílice (silica fume(SF), se muestran como las de mayor aceptación para la producción de cementos mezclados (Papadakis & Tsimas, 2002) (Martirena Hernández et al., 1998) (Toledo et al., 2007).

Las FA son un subproducto sólido que se obtiene por precipitación electrostática o mecánica de los polvos que acompañan a los gases de combustión de los quemadores de centrales termoeléctricas alimentadas por carbón y constituyen el MCS más empleado en la industria del cemento como sustituto de clínquer (Ahmaruzzaman, 2010). La producción actual de cenizas volantes se estima en el orden de los 900 millones de toneladas a nivel mundial, además de los millones de toneladas que han sido acopiadas por muchos años (Ramezanianpour, 2014).

Aunque estas se encuentran disponibles en grandes cantidades y constituyen alrededor del 30 % de la producción de clínker en el mundo, su calidad dificulta en muchos casos su aprovechamiento en la producción de cemento (Scrivener, 2014), a lo que se le suma además, que alrededor del 90 % de la producción de cenizas volantes está centrada en Estados Unidos, Rusia, China, India, Australia y Sudáfrica, países donde se encuentran la mayor distribución de las reservas de carbón (Höök et al., 2008).

Las BFS constituyen, después de las FA, el MCS más empleado en la producción de cemento (Humphreys & Mahasenan, 2002). Las escorias de alto horno pueden sustituir hasta un 70 % de clínker en el aglomerante, pero la cantidad de

escorias disponibles en todo el mundo actualmente representa solo el 5 % de la cantidad de clínker producido (Scrivener, 2014) y su disponibilidad y localización dependen de los volúmenes de producción de hierro y de la existencia de industrias metalúrgicas generadoras a nivel local o regional. Valores estimados en el 2016 indican que se produjeron alrededor de 300 a 360 millones de toneladas de escorias de alto horno en todo el mundo (U.S., 2017), pero no todas ellas fueron escorias granuladas.

En el caso del SF, que es un subproducto de la producción de silicio o de ferrosilicio y se considera uno de los MCS de mayor reactividad puzolánica (Khan & Siddique, 2011), su adición está limitada por la norma europea (UNE, 2011) a un 10 %, pero ha resultado muy eficaz en cementos que contienen otras adiciones minerales con una cinética de reacción más lenta (GBFS, PFA y puzolanas naturales), lo que permite incrementar el porcentaje de estos MCS en los cementos (Damtoft et al., 2008).

Según datos del 2006, la producción de SF no superó el millón de toneladas, lo cual constituyó solo el 0,03 % de la producción de cemento de ese año. Su disponibilidad también depende de su alto precio en el mercado internacional, que llega hasta los US\$ 800/t (Damineli & John, 2012) y de la localización de la industria que los genera, pues actualmente cerca del 65 % de la producción de silicio y sus ferroaleaciones se concentra en China (U.S., 2017).

Estas puzolanas por su alta demanda y su limitada disponibilidad se han visto reflejadas en el incremento de los precios en el mercado. Es por eso que los países subdesarrollos productores de cemento, han tenido que desarrollar otras soluciones para no verse obligados a importar los productos anteriormente mencionados.

Las adiciones a base de desechos agroindustriales provenientes tanto de la producción de azúcar como de la producción de arroz han constituido una de esas alternativas ya que han demostrado tener una excelente reactividad puzolánica (Alakhras, 2006); donde la cáscara de arroz se identifica por su disponibilidad en grandes cantidades en varias partes del mundo, típicamente contiene un 90% de sílice y cuando es quemada produce bastante ceniza (una tonelada por cinco de cáscara), la desventaja de la cáscara de arroz consiste en

que, para hacerla altamente puzolánica, es necesario tener bien controlada su quema, la temperatura no debe pasar de 700°C, si no la sílice se cristaliza y pierde su grado de reactividad (Action, 2010).

El uso práctico de estos desperdicios agrícolas se ve limitado principalmente por los costos asociados a la transportación y el procesamiento. Por lo que la adición de las arcillas calcinadas (metakaolin) a la producción de cemento ha resultado ser una alternativa a tener en cuenta para países tanto industrializados como en vías de desarrollo, ya que estos materiales componen el 75% de la corteza terrestre (Alakhras, 2006) en la década de los 80, y se prevé que en un futuro cercano se incremente más aún.

Reacciones puzolánicas: Las reacciones puzolánicas, al igual que los procesos de hidratación del cemento, transcurren de acuerdo con las leyes cinéticas de las reacciones heterogéneas en estado sólido, con presencia de fenómenos difusivos y marcada influencia de factores de tipo interno y externo de las puzolanas. La reacción principal de cualquier material puzolánico es un ataque a las estructuras de silicatos o alumino-silicatos por parte de iones OH -, para así formar productos similares a aquellos formados por la hidratación del cemento Portland.

La reactividad puzolánica de materiales provenientes de la activación térmica de las arcillas, dependen casi en su totalidad del tamaño de la partícula, el área de superficie específica y la mineralogía de las fases arcillosas. Si el material posee mayor superficie específica o finura provoca que aumente la velocidad de reacción cal-puzolana (Castillo et al., 2010).

A partir de la reacción de las puzolanas con el hidróxido de calcio generado durante la hidratación del cemento se forman nuevos productos de hidratación que son los responsables de la mejora en las propiedades mecánicas y de durabilidad del hormigón (Castillo et al., 2010). Durante la interacción entre el hidróxido de calcio, la sílice y la alúmina de las arcillas calcinadas, ocurren las siguientes reacciones representadas en la Figura 4:

```
AS_2
                  5CH
                                3H \rightarrow
                                                                    2CSH
                                             C<sub>4</sub>AH<sub>13</sub>
(Metacaolín) (Portlandita) (Agua) (Tetracalcioaluminato) (Silicato de calcio hidratado)
AS<sub>2</sub>
                6CH
                                                                    2CSH
                                              C<sub>3</sub>AH<sub>6</sub>
(Metacaolín) (Portlandita) (Agua)
                                          (Tricalcioaluminato) (Silicato de calcio hidratado)
AS_2
                                            C3ASH6
                                                                    CSH
                3CH
(Metacaolín)(Portlandita) (Agua) (Stratlingita o gehhelenita)(Silicato de calcio hidratado)
```

Figura 4: Reacciones que ocurren durante la interacción entre el hidróxido de calcio, la sílice y la alúmina de las arcillas calcinadas.

Uno de los efectos físicos que ocurren producto de la adición de una puzolana al Cemento Portland Ordinario (CPO), es el aumento de la compacidad por efecto filler y la nucleación heterogénea por el aporte de las puzolanas de una superficie adicional, que favorece la nucleación y crecimiento a edades tempranas de los productos de hidratación del CPO. Estos efectos no dependen de la reactividad química de la adición mineral, sino de la cantidad de superficie disponible y del por ciento de sustitución. Otro efecto es el de dilución, debido al cual se produce un mayor espacio para la formación y crecimiento de las fases hidratadas, lo que favorece la reacción de hidratación (Dopico et al., 2008).

La actividad puzolánica trae consigo un grupo de ventajas como son la disminución del contenido de cal libre en la mezcla para valores menores a un 30% de sustitución del CPO, proporciona un efecto acelerador en la hidratación de la fase alita del clínquer, acelera el tiempo de fraguado (inicial y final) de la mezcla, provoca un desplazamiento de los diámetros de poros hacia valores más pequeños (refinamiento de la estructura de poros) que conlleva a la disminución de la permeabilidad y el aumento de la resistencia mecánica. Al mismo tiempo, como la portlandita presente en la pasta es susceptible a formar fases con potencial expansivo al reaccionar con agentes externos como los sulfatos, su reducción favorece la resistencia al ataque químico (Rodríguez, 2014).

Arcillas caoliníticas: Las arcillas que contienen un alto porcentaje de caolinita (Al2O3.2SiO2.2H2O) son comúnmente llamadas caolín. Las propiedades de las arcillas varían considerablemente y son altamente dependientes de su

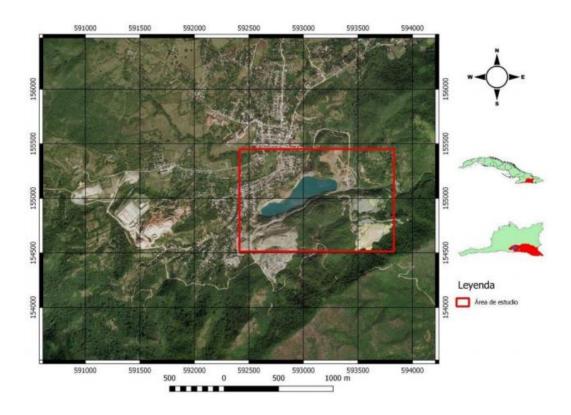
composición y estructura mineral. La principal característica que determina la utilidad del caolín para numerosas aplicaciones es la pureza mineralógica; teniendo en cuenta la presencia de impurezas como el cuarzo, anatasa, rutilo, pirita, siderita, feldespato, entre otras (H. Yanguatin, 2016). Las arcillas caoliníticas, tanto primarias como sedimentarias, están ampliamente disponibles en la corteza terrestre y su tratamiento térmico adecuado, conduce a la deshidroxilación de la estructura cristalina de la caolinita y su transformación en metacaolín – MC (H. Yanguatin, 2016).

Esta fase de transición altamente reactiva es un material amorfo con reactividad puzolánica, adecuado para uso como MCS (H. Yanguatin, 2016). En presencia de agua a temperatura ambiente, el caolín calcinado reacciona con el hidróxido de calcio liberado por la hidratación del cemento, para formar compuestos con propiedades cementicias tales como el C-SH (silicatos cálcicos hidratados) y la estratlingita (aluminosilicatos cálcicos hidratados) (H. Yanguatin, 2016).

Caracterización de la arcilla y su reactividad puzolánica: La determinación de algunas propiedades físicas mediante el uso de técnicas de caracterización, y de la composición mineralógica, es el punto de partida para los diferentes autores que describen el comportamiento puzolánico de caolines. Entre las técnicas más comúnmente empleadas se encuentran la granulometría laser, área superficial específica – BET, análisis termogravimétrico (ATG), análisis térmico diferencial (ATD), microscopia electrónica de barrido (MEB), espectroscopia infrarroja con transformada de Fourier (FTIR), y difracción de rayos X (DRX).

En cuanto a las características morfológicas, para la mayoría de los autores se encuentra una relación inversa entre el tamaño promedio de partícula (d50). Así mismo se encuentra que como consecuencia del tratamiento térmico del caolín, se presentan transformaciones que tienen lugar a través de la deshidroxilación de la caolinita con la agregación de partículas de metacaolín y la formación de gránulos más grandes, reflejado en el incremento generalizado del d50.

Se aprecia un descenso en el área superficial específica como consecuencia de la deshidroxilación de las arcillas. Las características morfológicas y la composición mineralógica de las arcillas caoliníticas, permiten mediante


correlaciones lineales simples explicar parcialmente su comportamiento puzolánico, sin embargo y dados los coeficientes de determinación; es necesario establecer otro tipo de correlaciones que modelen con más alto grado de significancia, la reactividad de este tipo de materiales.

De manera general, el aspecto geológico ha sido pobremente estudiado.

CAPITULO 1 CARACTERÍSTICAS GEOGRÁFICAS Y ECONÓMICAS DE LA REGIÓN

1.1. Situación Geográfica

El yacimiento "El Cobre" se encuentra en la provincia de Santiago de Cuba, al E de la isla de Cuba, y a 17 km al W de la ciudad de Santiago de Cuba (Figura 5). Las explotaciones se encuentran dentro del sistema montañoso de Sierra Maestra (Furrozola et al., 1964), a una altitud de unos 300 m. El sistema montañoso Sierra Maestra se extiende por más de 200 km, desde Cabo Cruz en el oeste, hasta Guantánamo en el este y su ancho promedio es de 20 km (Cabrera et al., 1983). El depósito se sitúa en la parte central de dicho sistema, en las inmediaciones del poblado de El Cobre, aunque se prolonga hacia el poblado de Melgarejo (Furrozola et al., 1964).

Figura 5. Imagen satelital y esquema de ubicación geográfica del Yacimiento El Cobre, escala 1:25 000.

1.2. Relieve

El relieve de la comunidad es montañoso, destacando la Sierra del Cobre, perteneciente al grupo orogénico Sierra Maestra. Las elevaciones máximas oscilan en cotas entre 600 y 800 metros sobre el nivel del mar.

1.3. Clima

El clima de la zona es húmedo tropical con temperaturas entre 15 y 35 grados centígrados. El régimen de lluvias es irregular, pero con dos temporadas bien definidas entre los meses de mayo-junio y septiembre-octubre. La media anual de precipitación es de 1 400mm.

1.4. Suelos

Son suelos de formación sialíticos y fersialíticos formados por la alteración de rocas vulcanógenas y vulcanógenas sedimentarias, es poco profundo de color pardo y composición textural limosa a limo arcillosa. El suelo local ha experimentado la influencia de la actividad minera y la tala indiscriminada, en la actualidad son pobres y dan lugar a pastos, matorrales con aislados árboles y zonas estériles con afloramientos de rocas.

1.5. Sismicidad

El poblado se encuentra en una zona de frecuente actividad sísmica. El origen de la misma se asocia a la zona sismo generadora Bartlett-Caimán, ubicada frente a las costas del Sur de la Sierra Maestra y particularmente frente a Santiago de Cuba.

1.6. Vegetación

La vegetación local es poco abundante. La mayor parte está atravesada por matorrales y pastos con aislados parches de vegetación más densa asociado a las elevaciones montañosas o los bordes de corrientes de agua. Hay diversidad de árboles, pero predominantes el mango, anoncillo, guácimas y palmas. Dentro de los arbustos se destaca el marabú.

1.8. Red hidrográfica

Existen varias corrientes fluviales de curso muy corto. La corriente fluvial más importante es el río Cobre con gastos estimados de entre 30 y 60 metros cúbicos por hora y cruza el poblado dividiéndolo en dos (ver figura 6).

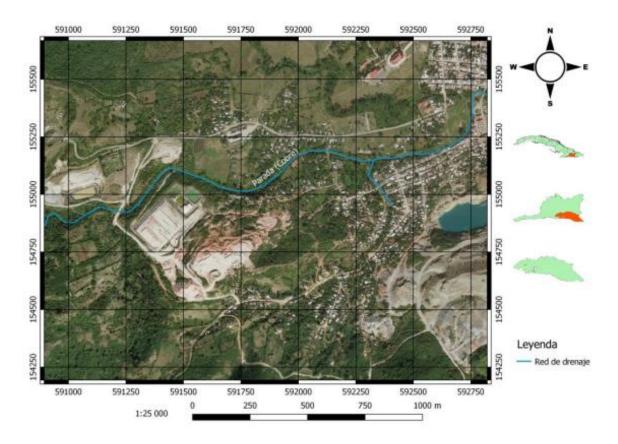


Figura 6. Mapa hidrográfico del área de estudio, escala 1:25 000.

1.8 Desarrollo económico de la región

Las principales fuentes de empleo en el poblado son: agricultura, servicios, salud y la fábrica de pienso. Cuenta con 58 centros laborales, de ellos 44 de carácter económico. Además, en la región se encuentra ubicada la primera mina de cobre a cielo abierto en América Latina donde se explota dicho mineral aportando ingresos considerables a la economía, se destaca también este municipio por enmarcar el famoso Santuario del Cobre donde se encuentra la Virgen de la Caridad patrona de Cuba, esto convierte al municipio en un atractivo turístico.

1.9. Características geológicas de la región y del área de estudio

1.9.1. Características geológicas

El depósito El Cobre constituye un excelente y bien estudiado ejemplo de depósito VMS bimodal máfico del Arco Volcánico Sierra Maestra – Caimán (Xiomara Cazañas Díaz, 2017).

Esta área está enmarcada en un ambiente tectónico con elementos del sustrato plegado (Iturralde Vinent, 1996) (Iturralde-Vinent, 1996 #22), representados por

unidades de naturaleza oceánica y arco volcánico del Paleógeno (Iturralde Vinent, 1996).

La litología de este está constituida por diferentes tipos de rocas vulcanógenas, vulcanógeno-sedimentarias y tufogénicas, con una gran variabilidad facial, tanto en sentido vertical como lateral (Iturralde Vinent, 1996). Las transiciones entre las diferentes litologías a veces son bruscas, otras graduales y, en muchos casos, es prácticamente imposible establecer delimitaciones entre ellas (Iturralde Vinent, 1996).

Las rocas más abundantes son tobas, desde aglomeráticas hasta cineríticas, lavas, lavas brechas y aglomeráticas, de composición andesítica, andesito-dacítica y dacítica, raramente riolítica, riodacítica y basáltica. En su constitución también participan tobas cineríticas, tufitas, tobas calcáreas, calizas tobáceas, areniscas polimícticas y volcanomícticas, así como grauvacas (Xiomara Cazañas Díaz, 2017). Además, este complejo vulcanógeno-sedimentario está cortado por cuerpos hipabisales y diques de diversa composición (Xiomara Cazañas Díaz, 2017).

Estas rocas vulcanógeno sedimentarias se generaron a partir de un arco volcánico (Iturralde Vinent, 1996) con gran actividad explosiva y efusiva 7 (Iturralde Vinent, 1996), lo que se refleja en el gran volumen de rocas magmáticas, material tufogénico y terrígeno; se depositaron en una cuenca de aguas profundas (Iturralde Vinent, 1996).

En el corte geológico del yacimiento de tope a la base se desarrolla una capa vegetal de poco espesor, mezclada con fragmentos de tobas alteradas, los cuales constituyen testigos de la roca madre. En el depósito subyacentemente a la capa anterior se desarrolla un horizonte mineralizado o capa de arcillas caoliníticas. Estas arcillas presentan diferentes tonalidades que van desde el amarillo claro, amarillo mostaza, rosa crema y abigarrado con predominio del color rojizo que reflejan la existencia de varios tipos litológicos en el yacimiento (Quintas Caballero et al., 1995), ver figura 7.

El depósito El Cobre, consta de 4 tipos principales de menas (Xiomara Cazañas Díaz, 2017):

- 1. Estratiformes de sulfatos de anhidrita y barita.
- 2. Estratoligadas de sulfuros de Cu Zn con Au
- 3. Filoniano de Cu y stockwork de cuarzo con Cu.
- 4. De sulfatos con Cu, Zn ± Pb

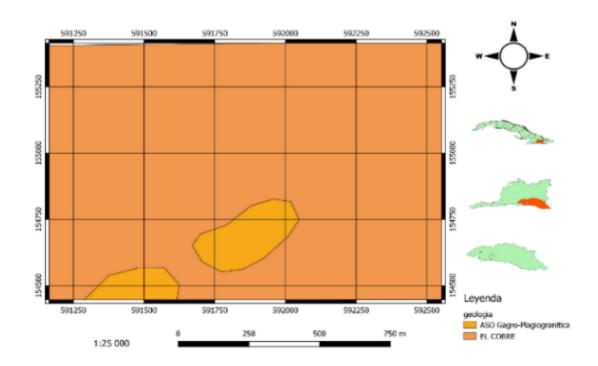


Figura 7. Esquema geológico del área de estudio, escala 1:25 000.

1.9.2 Estratigrafía

El yacimiento "El Cobre" se sitúa dentro del grupo Cobre, y en esta unidad se encuentran la mayor parte de los depósitos minerales de Cuba Oriental. En los materiales del arco paleógeno de Cuba Oriental se distinguen las siguientes grandes unidades: a: Formación Sabaneta, constituida principalmente por rocas epiclásticas e interpretada como sedimentos depositados en la cuenca de retroarco (Iturralde Vinent, 1996), (Quintas Caballero et al., 1995), b:Grupo Cobre (Taber, 1931), constituido predominantemente por rocas piroclásticas, volcanoclásticas, plutónicas y lavas, y que se interpreta como los materiales formados en la zona axial del arco (Iturralde Vinent, 1996).

Los mayores afloramientos del arco paleogénico en el Caribe se encuentran en el sistema montañoso Sierra Maestra de Cuba, y ocupan el extremo sur oriental de la isla (Iturralde Vinent, 1996). Con respecto al yacimiento podemos decir que

los tipos genéticos de esta materia prima son hidrotermal correspondientes a rocas riolíticas, andesitas y andesíticas dacíticas alteradas y residual formado a expensas de la meteorización de rocas metamórficas. De estos tipos genéticos es el hidrotermal el más dominante por eso este yacimiento se considera de origen hidrotermal.

1.9.3 Vulcanismo

El arco de islas volcánicas del Paleógeno ocupa la totalidad de la Sierra Maestra, y se desarrolló en Cuba entre el Paleoceno (Thanetiense) y el Eoceno Medio Inferior (Cabrera et al., 1983) ;(Iturralde Vinent, 1996). Esta actividad volcánica estuvo restringida a la parte oriental de la isla y está representada por más de 4000 m de espesor de rocas volcánicas y volcanoclásticas, intruídas por plutones graníticos.

En la región del Caribe, el arco paleogénico se extiende a las islas de La Española, Jamaica, Puerto Rico, Antillas Menores septentrionales, la Cresta de Aves, la Dorsal de Caimanes y el elevado de Nicaragua (Branch, 1984) ;(Kesler, 1990). Sobre estas rocas volcánicas, (Calderón, 1997) plantea que por su estructura y textura se acercan más a las rocas efusivas que a las intrusivas, en tanto que sus contactos con las rocas cercanas no siempre son claros y definidos. En unas son claramente discordantes, en otras aparentemente concordantes y hasta se desarrollan por los planos de estratificación.

Por otra parte, diversos autores (Bogdanov et al., 1963); (Laverov & Cabrera, 1967) las han denominado como "cuerpos subvolcánicos" y diques. Los emplazamientos de estas rocas parecen estar controlados por zonas de fracturas, que no siempre tienen una expresión clara en el campo. No obstante, en su distribución muestran ciertos rasgos de alineamiento que sugieren un carácter intrusivo.

1.9.4 Tectónica

La falla El Cobre consiste en un sistema de fracturas de dirección aproximadamente E-W que ha generado sistemas de diaclasas (falla de plumaje) de dirección SW y N W. La falla se ha podido seguir, fuera de los límites del depósito, en más de 40 km (Grechanik & Norman, 1971). En la zona de falla las rocas están muy cataclastizadas. A esta zona están asociados diques, vetas de cuarzo, minerales de alteración hidrotermal y mineralización cuprífera. Hacia el

este la falla queda cubierta por los depósitos de calizas de edad Eoceno Medio de la Sierra de Boniato. En dirección Oeste, la presencia de pequeños depósitos con predominio de sulfuros de Cu-Fe diseminados en la roca volcanoclásticas (tobas) ha permitido identificar la falla y seguirla según su dirección.

El depósito más interesante en dirección Oeste es "El Pajón" y se ubica a 7 km al SW del yacimiento "El Cobre". El origen de la falla El Cobre, así como de sus sistemas satélite, probablemente esté relacionado con las etapas iniciales de desarrollo del arco (Pérez & García, 1997), pero según (Alioshin et al., 1975), (Kuzovkov et al., 1977) y (Golovkin et al., 1978), las fallas de este sistema E - W, en etapas más tardías, pudieron funcionar como volcanes fisurales.

Los filones y el stockwork de sulfuros en el yacimiento "El Cobre", se ubican según la falla El Cobre (Pfeffer, 1961); (Barrabí et al., 1993). Además de la falla El Cobre, en el yacimiento está presente un sistema N-S transcurrente. dicho sistema es de probable edad Eoceno Superior y tuvo su origen al cesar la actividad volcánica y disminuir la compresión N-S, que conllevó a un cambio en el régimen tensional (Pérez & García, 1997). El sistema N-S está poco desarrollado, pero se ha podido reconocer en el área de desarrollo de la mineralización cuprífera filoniana y de stockwork, principalmente en la corta a cielo abierto.

El sistema transcurrente NS origina desplazamientos de orden decamétrico en los cuerpos minerales y sus rocas encajantes y es responsable de la estructura en bloques que presenta el yacimiento "El Cobre". Esta estructura en bloques fue señalada por (Salton, 1961).

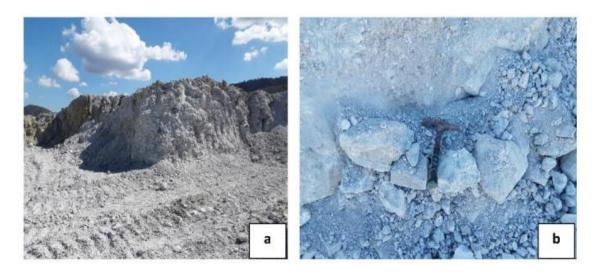
Figura 8: Mapa tectónico del área de estudio, escala 1:25 000.

2. MATERIALES Y MÉTODOS

2.1. Introducción

Una vez seleccionado el depósito, la investigación estuvo dividida en tres etapas fundamentales. En la primera, se realizó una revisión bibliográfica de todos los materiales recopilados, que guardan relación con la investigación. La segunda se dirigió a la búsqueda de zonas perspectivas, documentación y selección de muestras para analizar. En la tercera, se seleccionaron y prepararon las muestras para realizar los ensayos de laboratorio, donde se realizó Análisis Térmico Diferencial, Difracción de Rayos X, Rayos X Diferenciales, Fluorescencia de Rayos X, determinación de la actividad puzolánica a partir de la concentración de aluminio y silicio disueltos en álcalis y determinación de la resistencia a la compresión mecánica por el método de mortero normalizado. Finalmente se establecieron las potencialidades del yacimiento.

2.2. Obtención de las muestras


El muestreo estuvo dirigido a la zona de oxidación o de sombrero y hierro, donde aparecen las alteraciones caoliníticas superficiales. Esta zona de oxidación ha sido removida en su mayor parte por las labores de minería extractiva del oro.

En el año 2018 cuando se comenzaron los trabajos referentes a esta investigación existían aquí poderosas cortezas caoliníticas, que hoy se encuentran en las escombreras anexas al yacimiento.

La minería en forma de bancos ha dejado al descubierto vetas del material caolinítico y otros materiales más enriquecidos en micas, estas últimas se aprecian en abundancia en el depósito, así como abundantes cristales de yeso, ver figura 9.

Las arcillas se presentan blancas, grises y en algunos casos coloreadas por la intensa oxidación. Es posible distinguir a simple vista los cristales de pirita y es característico el olor a azufre que desprenden las arcillas.

No son arcillas plásticas, hay una mezcla muy completa y hasta cierto punto caótica entre las arcillas y las rocas de caja.

Figura 9: Afloramientos de arcillas en el Yacimiento el Cobre. a) perfil expuesto por la minería, b) se puede observar lo caótico de la mezcla entre la roca y minerales de la arcilla.

2.3.1. Preparación de las muestras

Las muestras fueron preparadas en el laboratorio físico del Instituto de Tecnología de Karlsruhe, Alemania. Una vez desempacados fueron depositados en bandejas plásticas y secados a temperatura ambiente, ver figura 10.

Figura 10: a) paquetes originales, b) apertura de los paquetes, c) bandejas receptoras.

2.3.2. Preparación para Difracción de Rayos X.

Las muestras para Difracción de Rayos X se secaron a 105°C durante 12 horas, para lograr un mejor secado de las muestras sin comprometer la composición mineralógica. Se molieron a mano en un mortero de ágata durante 15 minutos aproximadamente. Se utilizaron 15 ml de isopropanol para la trituración en húmedo, añadiendo 5 ml cada 5 minutos. El resultado fue una pasta que luego

se secó a 40°C durante 12 horas. La granulometría resultante fue inferior a 5 micrómetros, ver figura 11 y 12.

Se realizó la preparación con orientación preferencial de los cristales. Las muestras que ya habían sido molidas y previamente secadas, se colocaron en un tubo de ensayo (4-5 g) donde se adicionó una mezcla de agua con 10% de amoníaco. Luego se colocaron en una máquina de ultrasonidos.

Las diferentes series para análisis de la fracción arcillosa, fueron procesadas en un equipo Bruker con las siguientes condiciones: radiación $CuK\alpha$ y una rejilla de divergencia de 0,5°. Las muestras fueron analizadas entre los 5 y los 80° (20), a un paso angular de 0,008° y un tiempo por paso de 30 segundos.

Se utilizó el software HighScore Plus, con base de datos de 2015 y PDF2 complementaria, utilizando primero, subrutinas programas y luego información obtenida del Manual de Difracción de Rayos X del Servicio Geológico de los Estados Unidos, así como fichas disponibles en la base de datos www.mindat.org.

Figura 11: a) cuarteo en bandejas, b) accesorios del molino de anillos, c) molino de anillos.

Figura 12: a) Mufla con ventilación interna, b) mortero de ágata, c) pasta resultante luego de la molienda en húmedo.

2.3.3. Muestras para Fluorescencia de Rayos X.

Las muestras para FRX se secaron a 40 °C, luego se pulverizaron en el molino de anillos. Se tomaron 2 g de muestra previamente homogenizada y cuarteada, y se calcinaron durante 2 horas a una temperatura de 950 °C. La ceniza resultante, fue colocada para su enfriamiento en una desecadora de vidrio. El método usado fue el de la perla fundida. Se calcularon en todos los casos las pérdidas de masa por ignición.

Figura 15: a) Desecadora de vidrio, b) muestras en crisoles de porcelana.

Hay que destacar que en cada de una de las preparaciones, se realizó el adecuado cuarteo y homogenización de las muestras para garantizar en el marco permitido la representatividad de los análisis.

2.3.5. Cálculo de Pérdidas por Ignición

El cálculo de perdida por ignición se realizó en el laboratorio de química del MPA en el Instituto de Tecnología de Karlsruhe. Para ello se tomaron 2 g de muestras previamente secadas a 105 °C y pulverizadas. Seguidamente en crisoles de

porcelana rotulados y pesados se tomó la medida del peso del material seco. Se calcinaron a 950 °C durante dos horas y luego se dejó enfriar en una desecadora. Finalmente se midieron los diferentes pesos y se calcularon las pérdidas, que también fueron utilizadas para la corrección de los datos obtenidos por FRX. Para el cálculo de las pérdidas por ignición a 750, 800 y 850 grados se utilizaron los datos aportados por los análisis termo-gravimétricos TG.

2.3.6. Análisis Térmico Diferencial

Las muestras previamente molidas y secadas a 105 °C fueron analizadas en un equipo NETZ 5CH para Análisis térmico simultáneo, modelo STA 409. El intervalo de temperatura, de temperatura ambiente hasta 1000 °C, a razón de 10 °C/min. Se utilizó atmósfera sintética de oxígeno. Se usaron cantidades cercanas a los 2 mg para cada ensayo.

2.3.7. Determinación de Caolín Equivalente (KE)

La Ecuación 1 muestra la fórmula usada para el cálculo del caolín equivalente. Los datos de masa a los diferentes intervalos a temperatura fueron extraídos de los termogramas obtenidos. Para la pre selección química se usaron los criterios expresados en la tabla 4 y tabla 4.1.

$$\%OH^{-} = \frac{m(350^{\circ} C) - m(850^{\circ} C)}{m(200^{\circ} C)} \cdot 100$$

$$K^{E} = \frac{\%OH^{-}}{13.96} \cdot 100$$

Ecuación 1: Fórmula empleada para calcular el porciento de caolín equivalente (Almenares-Reyes, 2017).

Tabla 4: Criterios límites para cumplir con los requisitos de materia prima para el LC3 (Almenares-Reyes, 2017).

	Criterios límites	
Al2O3	>18,0 %	
CaO	<3,0 %	
SO3	<2,0 %	
Al2O3/SiO2	>0,3	
PPI	>7,0 %	

Tabla 4.1: Clasificación de la arcilla de acuerdo a su potencial bajo los criterios expresados en el gráfico PPI (350-850 °C) vs. Al2O3 (Almenares Reyes, 2017).

Tipo	Composición	Potencial	
1	%KE>60	Alto	
II	60>%KE>40	Bueno	
Ш	%KE<40	Moderado	
IV	Contenido variable de KE,	Debe evaluarse de	
	contaminadas con	manera individual	
	minerales no arcillosos,		
	relativamente		
	abundantes, térmicamente activos,		
	que se		
	descomponen en el mismo		
	intervalo de		
	temperatura de los minerales		
	arcillosos		
	(carbonatos, sulfuros, sulfatos)		

2.3.8. Determinación de alúmina y sílice disueltos en álcalis.

Se evaluó la solubilidad del aluminio y el silicio según la metodología propuesta por (Cabrera Apolinare & Almenares Reyes 2016) y (Almenares Reyes, 2017). Se tomaron 0.1g de arcilla calcinada y se disolvieron en 50ml de NaOH (0.5M) a una temperatura de 30°C durante 24 horas y a 30rpm. Luego se tomaron 25ml de la solución original y se agregaron 2.5ml de HCL antes de centrifugar a 1500rpm, durante 20 minutos. Finalmente se filtró la solución resultante. Las muestras se analizaron mediante espectroscopía de absorción atómica.

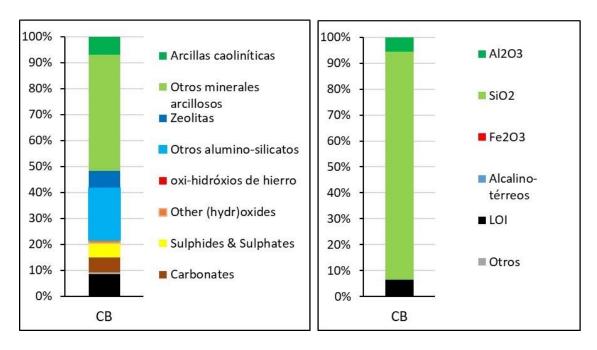
2.3.9. Reactividad puzolánica por el método de calorimetría isotérmica (R3). Se utilizaron dos protocolos para evaluar la reactividad puzolánica. Para el primero se manejó calorimetría isotérmica (protocolo R3) con la metodología propuesta por Avet et al. 2016. Se prepararon 110g de pasta, compuesta por 37.5g de CaOH y 12.5g de arcilla calcinada, que fueron mezclados y almacenados durante 8 horas a 40°C. Posteriormente a esta mezcla se adicionó una disolución compuesta por 60g de agua, 0.3156g de HOH y 1.4731g de K2SO4 previamente mezclados y almacenados durante 8 horas a 40°C. La mezcla final fue realizada a 1600rpm durante 2 minutos. Se tomaron 15g de la pasta resultante y se introdujeron en un calorímetro TAM Air de segunda generación, previamente calibrado a 40°C. La medición se realizó durante 5 días.

2.3.10. Resistencia a la compresión por el método de mortero normalizado En los morteros, que originalmente llevan 450g de cemento, se hizo una sustitución de 370g de cemento con 135g de arcilla calcinada, se le agregó 1350g de arena normalizada y 225g de agua, fue necesario utilizar 0.04g de superplastificante (Master Glenium ACE 46) para lograr la fluidez necesaria ya que las arcillas tienden a absorber agua. Una vez conformados los morteros se vertieron en los moldes de 40x40x160mm para que adquiriera la forma prismática establecida por la norma, se dejaron reposar en atmósfera húmeda durante 24h. Finalmente, luego de ser despegados de los moldes se colocaron en agua durante 28 días para las pruebas de la resistencia a la compresión. Los ensayos de resistencia fueron realizados en las facilidades del Instituto de Tecnología de Karslruhe.

2.3.11. Determinar la resistencia a la compresión en morteros para una dosificación de PPC30 a partir del método de correlación de François Avet Este método es una nueva prueba rápida, pertinente y considerada fidedigna para predecir la actividad puzolánica de arcillas calcinadas con contenido de caolinita extendiéndose desde 0 para 95 %. El resultado de ensayos con más de 80 tipos de arcillas de Europa, América y Cuba ha permitido establecer una ecuación de correlación para determinar la resistencia a la compresión en morteros normalizados para una dosificación de PPC30 a partir de los contenidos de caolín equivalente. Fórmulas para la correlación a los 1, 3, 7, 28 y 90 días siendo (x) el caolín equivalente y (y) la resistencia a la compresión:

```
y (90 días) = 0,413x + 38,409; R2= 0.901

y (28 días) = 0,45x +34,505; R2= 0.9118


y (7días) = 0,3363x + 27,879; R2=0.9236

y (3 días) = 0,1483x + 22,52; R2=0.9297

y (1 día) = 0,0899x + 11,198; R2= 0.9585
```

3. ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS

3.1. Resultados del análisis químico y mineralógicos

Figura 16: Resultados de la cuantificación de fases minerales (a la izquierda), resultados de la composición estimada de la fase amorfa (a la derecha).

Consecuentemente con la génesis del depósito se pudo determinar la presencia de minerales arcillosos del tipo caolinita, producto a las alteraciones hidrotermales, aunque dichas arcillas no son las predominantes como se puede apreciar en la figura 16. Predominan los minerales arcillosos del tipo 2:1 (micas). Además, se pudo determinar la presencia de zeolitas, así como la de óxidos e hidróxidos de hierro, sulfuros, sulfatos y una pequeña cantidad de carbonatos.

Podemos llegar a la conclusión mediante este método que la parte amorfa de la muestra analizada representa cerca del 10% en peso.

En la tabla 5, se observan los resultados de la composición química realizada a las muestras tomadas del yacimiento El Cobre. El bajo contenido de hierro, a pesar de que se cuantifica alrededor de un 5% de sulfuros y sulfatos que contienen hierro, así como un 5% de hidróxido de hierro, es justificado debido a que no hay un alto desarrollo de los procesos de intemperismo como para que el hierro abandone las fases cristalinas originales.

El contenido de Al₂O₃ determinado, fue de 20,94 % estando por encima al valor límite establecido por la metodología establecida por Almenares Reyes en el 2017 (8 %). El contenido de CaO es de 0,06 % siendo este valor positivo con respecto al criterio límite. Se calculó el contenido de azufre total, encontrándose por debajo del criterio límite establecido del 2,0 %.

Se debe tener en cuenta que la norma regula el azufre en forma de SO₃, y asumiendo que todo el azufre determinado, está en esa forma, por el factor de conversión se obtiene que el SO₃ en el depósito no supera el 1.12% estando dentro del rango permitido. El contenido de azufre es aportado por los sulfatos y sulfuros que se encuentran en el yacimiento.

La relación Al₂O₃/SiO₂ fue de 0,33 %, estando ligeramente por encima del valor mínimo establecido de 0,3 %. ´

En la tabla 5, se pueden apreciar algunas diferencias entre los valores químicos calculados en el laboratorio y los valores químicos obtenidos de la cuantificación de Difracción de Rayos X, asumiendo que dicha diferencia está presente en la fase amorfa. Esto permitió establecer la composición de la fase amorfa, siendo predominante la sílice (ver figura 16).

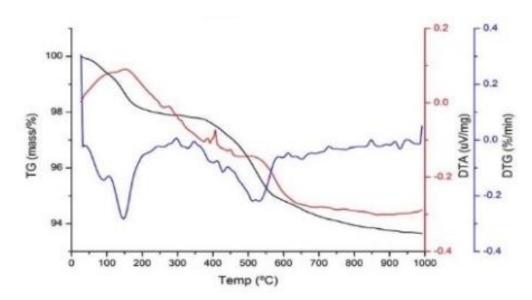
El valor del Al₂O₃ en el experimental es de un 20.94 % y en calculado es de un 20.25 %. En cambio, la SiO₂ en el experimental es de un 61.79 % y en el calculado es de un 51.42 %, siendo este valor el de mayor variación con una diferencia de un 10 %. Esta diferencia se atribuye a que hay una sobre cuantificación de fases por método térmico y dichas fases están presente en la fase amorfa.

Tabla 5: Comparación entre los valores calculados a partir de la composición mineralógica generada por DRX y la experimental calculada en el laboratorio.

Elementos	Valor calculado	Valor experimental
Al ₂ O ₃	20.25	20.94
SiO ₂	51.41	61.79
Na₂O	0.33	0.28
K₂O	5.28	4.96
Fe ₂ O ₃	1.72	1.65
CaO	0.31	0.06
MgO	1.17	0.61
CO ₂	0.19	1.26

SO₃	2.18	1.32
H ₂ O	6.5	6.26
MnO	0.09	0.01
TiO ₂	1.45	1.37
P2O ₅	0.37	0.02
SrO	0	0
BaO	0	0

Según la metodología de (Almenares Reyes, 2017) estas arcillas cumplen con los criterios químicos de preselección.


3.2. Resultados del análisis térmico diferencial y cálculo del caolín equivalente

En el termograma de El Cobre, se observa un intenso pico endotérmico en la curva DTG a partir de los 40°C y se extiende aproximadamente hasta los 250°C (ver figura 17). Es una curva escalonada, el primer escalón ocurre hasta los 50°C. En un segundo momento, alrededor de los 100-150°C tiene el máximo endotérmico y todavía continua el proceso hasta cerca de los 200°C. El acompañamiento de la pérdida de masa indica que se está perdiendo aproximadamente un 2 % de la masa de la muestra, esto está relacionado con la pérdida del agua absorbida.

En la curva DTG se logra observar que existen picos exotérmicos, alrededor de los 300°C, 350°C y 400°C precedido de un pico endotérmico. Estos picos exotérmicos están relacionados con fusiones y cambios cristalográficos por parte de los grupos de sulfatos y sulfuros. Debido a la presencia de la jarosita, ocurre un proceso de deshidroxilación entre los 350 y 500°C, seguido de un pico exotérmico, luego, entre los 650 y 750 °C ocurre la descomposición del sulfato de hierro III (figura 17).

La pérdida de masa significativa se empieza a apreciar a partir de los 500°C dónde hay un máximo endotérmico doble. Pero el fenómeno endotérmico se extiende desde los 350°C hasta los 600°C. Hay acompañamiento con un máximo de la curva DTA, en este caso la pérdida de masa, perdiendo hasta un 6 %, ya para este intervalo se ha perdido un 4 % de la masa total y esto está relacionado con la deshidroxilación en los minerales del grupo de las arcillas.

El complejo de picos exotérmicos y endotérmicos que se aprecian a partir de los 600°C, en los que no se pierde mucha masa y no hay efectos pronunciados en la curva DTA. Están relacionados con fenómenos de transformación de los minerales arcillosos en minerales del grupo de la espinela, donde probablemente se esté formando pre-mulita.


Figura 17: Resultados del análisis térmico diferencial con superposición de las curvas DTA, DTG y TG.

Aplicando el procedimiento de cálculo de caolín de equivalente de (Almenares Reyes, 2017), se determinó en los intervalos de 750, 800 y 850°C las pérdidas por ignición (PPI) de estas arcillas.

Se observa que en todos los casos el contenido de Ke es bajo, teniendo en cuenta los requerimientos de preselección establecidos por Almenares Reyes, 2017 (Ver tabla 6)

Tabla 6 Determinación PPI y Ke a las diferentes temperaturas establecidas

Temperatura (°C)	Masa (g)	PPI	Ke
200	98.11		
350	98.79		
750	94.09	3.77	27.05
800	93.93	3.93	28.18
850	93.84	4.02	28.85

Figura 18: Ubicación de los contenidos de Al_2O_3 (20.94) contra los contenidos de PPI a diferentes temperaturas (x= 750°C; y= 800°C; z= 850°C) para determinar la potencialidad de las arcillas según (Almenares Reyes, 2017)

Según la metodología de (Almenares Reyes, 2017) estas arcillas poseen potencialidades moderadas ya que, a pesar de cumplir con la selección preliminar sobre la base de los criterios químicos, al evaluar en el diagrama los contenidos de Ke y el contenido de Al₂O₃ se encuentra ubicado en las arcillas de tipo III, (ver figura 18).

El uso de este material está limitado pues las principales fases minerales presentes son micas moscovitas, que necesitan mayor temperatura de activación, sulfatos que entorpecen el proceso e desidroxilación y y bajos contenidos de caolinita, lo que reduce las potencialidades pues se ha demostrado que los minerales del grupo de la caolinita poseen la mayor influencia a la hora de lograr reactividad con requerimientos mínimos de un 40% (Almenares Reyes et al. 2017).

3.3. Influencia de la temperatura y la composición mineralógica en la reactividad puzolánica por medio de calorimetría isotérmica y solubilidad alcalina

El análisis de los valores de SiO₂ muestra que, aunque existe un pico de solubilidad a los 800°C, estando por encima de los 100 ppm, a medida que aumenta la temperatura fue disminuyendo el grado de solubilidad de este elemento, siendo a los 850°C aproximadamente 80 ppm. En el caso del Al₂O₃, la solubilidad tiene una tendencia a aumentar con la temperatura, alcanzando su pico máximo a los 850°C donde se observa un aumento de la solubilidad, siendo el pico de más de 30 ppm ascendiendo desde la fase inicial en la que se encontraba a aproximadamente 22 ppm. La suma Al₂O₃ + SiO₂ posee una relación directa con la temperatura que se ve con una tendencia a aumentar con el incremento de la temperatura, obteniéndose los mejores valores de reactividad a los 850°C siendo este pico casi de 140 ppm.

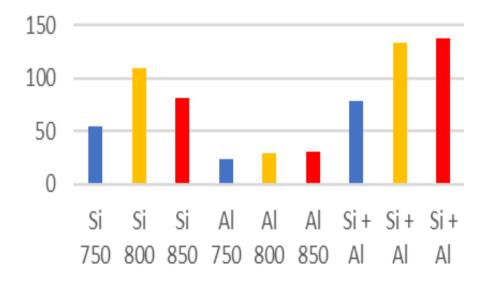


Figura 19: Concentración de Al-Si soluble en una mezcla alcalina a diferentes temperaturas

La figura 19 que ilustra la curva del flujo de calor normalizado, refleja que no hay período de inducción, ya que el período de inducción está solapado debido a que la reacción ocurre muy rápido. A los 750°C y 800°C se aprecia una caída casi lineal de la curva del flujo de calor, por lo tanto, se infiere que no hay reacciones

de hidratación, específicamente a los 750°C no se forman productos de hidratación.

A los 800°C se forma una pequeña curva, indicando que a las 5 horas se comienzan a formar estos productos que terminan su formación alrededor de las 10 horas. En comparación con el gráfico de aluminio silicio se puede percibir que a esta temperatura ocurre una mayor solubilización de sílice y alúmina. Esta gran solubilización de la sílice es positiva para la reactividad puzolánica.

A los 850°C si aparece una curva prominente, empieza a formarse alrededor de las 6 horas, pero se extiende a las 15 horas aproximadamente y este comportamiento está relacionado con que la solubilidad de la alúmina y sílice mejora mucho a esta temperatura, ya que al haber mayor solubilización de éstas existe mayor probabilidad de formación de productos de hidratación. Existe una correlación positiva entre lo observado en la solubilidad y lo observado en calorimetría.

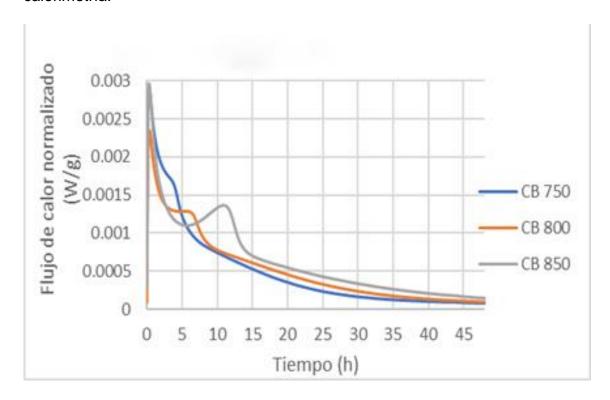


Figura 20: Comportamiento del flujo de calor normalizado en función del tiempo

El gráfico de calor acumulado demuestra que temperatura es la más reactiva, en los casos donde hay tendencias similares entre una curva y otra como se aprecia en el gráfico de flujo de calor (ver figura 20). La curva de 800°C es la más reactiva, ocurriendo una mayor liberación de flujo de calor a esta temperatura.

Está liberación de calor está en correspondencia con la formación de una pequeña fase de productos de hidratación. Se observa que la mejor temperatura es a los 850°C porque es donde ocurre la mayor hidratación que esta se corresponde con la formación de productos de hidratación.

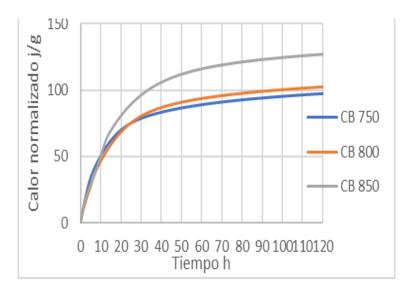


Figura 21: Comportamiento del calor normalizado en función del tiempo

Estas arcillas registraron un aumento de la solubilidad de SiO₂ a los 800°C, con una disminución a los 850°C relacionada con la estabilización del material y formación de nuevas fases cristalinas (ver figura 21). En cambio, el comportamiento de la Al₂O₃ es contrario con un aumento a los 850°C, lo que propició que la relación Al₂O₃/SiO₂ fuera ligeramente mayor a los 850°C. Esto se ve reflejado en las curvas de flujo de calor normalizado y de calor acumulado, dónde se reporta una mayor liberación de calor a los 850°C, relacionados con una reactividad puzolánica mayor. Teniendo en cuenta las curvas de calor se aprecia que, a mayor temperatura, mayor reactividad puzolánica y más se desplaza en el tiempo la reacción de hidratación.

3.4. Resultados de la correlación de resistencia a la compresión según el contenido de caolín equivalente y resistencia a la compresión

Se realizó una serie de estimación por el método de (Almenares Reyes, 2017). Utilizando el contenido de caolín equivalente a 750, 800 y 850°C (ver figura 22) y se realizó una serie de control con mortero normalizado sustituyendo un 30% de cemento. Según los valores obtenidos por la estimación sobrepasan los

requerimientos de resistencia a la compresión de la norma cubana (Cemento 2007) a todas las temperaturas de activación.

La serie de control a los 800°C según la norma de control DIN EN 196-1 2005-05 revela que con un 30% de sustitución de cemento no se alcanzan los valores establecidos en la norma con un 30.06 MPa a los 28 días, con 1.94 MPa de resistencia de diferencia con los valores estimados.

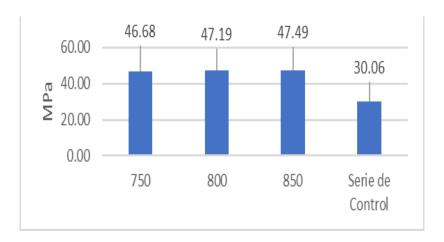


Figura 22: Comportamiento de la resistencia a la compresión mecánica a los 28 días según el método de (Avet, 2016).

Podemos concluir que, según la serie de estimación por el método de François Avet se superan los valores de resistencia a todas las temperaturas. De acuerdo a los resultados de François Avet a los 800°C existe una resistencia de 47.19 Mpa, mientras que el resultado de la serie de control a la misma temperatura es de 30.06 Mpa, indicando una sobreestimación de los resultados lo que limita el uso del este método para determinar las posibilidades de la arcilla como material cementicio suplementario. Al menos esto ocurre en un depósito como El Cobre.

A partir de este desfase por el método de estimación y la serie de control, se hace necesario realizar un estudio más profundo que permita establecer si dichas diferencias se pueden manifestar a otras temperaturas.

Hay que considerar además que la temperatura a la que se alcanzó mayor reactividad puzolánica desde el punto de vista del protocolo R3, (850 °C), se propone realizar un estudio más detallado para determinar si una mayor temperatura de activación permitiría superar los 1.96 MPa necesarios para que

se cumpla la norma de resistencia, debido a que los minerales del tipo mica necesitan mayor temperatura de activación.

4. CONCLUSIONES

- Se pudo establecer una composición mineralógica compleja constituida en lo fundamental por pocos minerales arcillosos del grupo de la caolinita, minerales del tipo 2:1, predominantemente moscovita, minerales del grupo de los sulfatos y sulfuros, carbonatos, óxidos e hidróxidos de hierro, zeolitas y otros aluminosilicatos.
- Las arcillas del depósito El Cobre, en cuanto a su composición química cumplen con los criterios establecidos por (Almenares Reyes, 2017) sin embargo, no cumplen con el contenido de caolín equivalente, convirtiéndolas en arcillas de tipo III dándole bajas perspectivas como material cementicio suplementario.
- Los mejores valores de reactividad fueron a los 850°C teniendo en cuenta el comportamiento solubilidad de la sílice y el aluminio; sin embargo, los mejores resultados desde el punto de vista de liberación de calor se aprecian a los 850°C, indicando que una proporcionalidad directa entre la temperatura y la reactividad.
- Existen discrepancias entre el método de Avet utilizado para la determinación de la resistencia a la compresión a partir del caolín equivalente y una serie de control realizada según norma europea, siendo necesario hacer un estudio de mayor profundidad para analizar la persistencia o no de dicha discrepancia a todas las temperaturas.

5. RECOMENDACIONES

Se debe tener en cuenta, que las curvas de resistencia a la compresión indican que se obtiene mayor reactividad a los 850°C, por lo tanto, se recomienda ensayar con morteros a esa temperatura.

Se recomienda hacer un estudio de mayor profundidad para analizar la persistencia o no de la discrepancia existente entre el método de Avet utilizado para la determinación de la resistencia a la compresión a partir del caolín equivalente calculado y una serie de control realizada según norma europea a todas las temperaturas.

6. REFERENCIAS BIBLIOGRÁFICAS

- Action, P. (2010). The Schumacher Centre for Technology and Development. In: From www.practicalaction.org.
- Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. *Progress in Energy and Combustion Science*, 36, 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
- Alakhras, N. (2006). Durability of metakaolin concrete to sulfate attack. *Cement and Concrete Research*, 36.
- Alioshin, V., Sánchez, F., Eguipko, O., Pérez, M., Shelagurov, V., & Burov, V. (1975). Informe sobre los resultados del levantamiento geológico y su búsqueda a escala 1:100 000 en la parte nororiental de La Sierra Maestra. In. Archivo CNFG.
- Almenares Reyes, R. S. (2017). Potencialidades de arcillas caoliníticas cubanas para la obtención de materiales cementicios suplementarios.
- Alujas Díaz, A. (2010). Obtención de un material puzolánico de alta reactividad a partir de la activación térmica de una fracción arcillosa multicomponentes. In. Universidad Central "Marta Abreu" de Las Villas.
- Avet, F. (2016). Development of a new rapid, relavant and reliable test method to evaluate the puzzolanic reactivity of calcined kaolinitic clays.
- Avet, F., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test metod to evaluate the puzzolanic reactivity of calcinated kaolinitic clays. *Cement and Concrete Research*, 85, 1-11.
- Baronio, G., & Binda, L. (1997). Study Of The Pozzolanicity Of Some Bricks And Clays. Construction And Building Materials.
- Barrabí, H., Cordovés, R., Ananías, L., Gutiérrez, M., & López, R. (1993). Informe geológico parcial para la exploración detallada del sector de la cantera entre nivel 0 y superficie. In (pp. 1010). La Habana, archivo de la Oficina Nacional de Recursos Minerales, inédito.
- Batista, R., Coutin, D., & Mesa, F. (2013). Los Recursos Minerales y el desarrollo local. In *La Habana Paper presented at the V Convención Cubana de Ciencias de La Tierra, Geociencia*. La Habana, Cuba.
- Betancourt Rodríguez, S. (2017). MATERIALES PARA LA CONSTRUCCIÓN.
- Bogdanov, Y. V., Miralles, M., & Bogdanova, V. (1963). Informe sobre los trabajos de búsqueda y levantamiento en la reg i ó n del yacimiento El Cobre (provincia Oriente). In. La Habana, CNFG, inédito.
- Branch, M. G. (1984). Map of geologic provinces in the Caribbean region. *The Caribbean-South American plate boundary and regional tectonics*, 162.
- Cabrera Apolinare, E., & Almenares Reyes , R. S. (2016). Assessment of the puzzolanic reactivity of calcined kaolinitic clays by a rapid alkaline solubility test.
- Cabrera, E., Almenares, R., & Alujas, A. (2018). Assessment of the pozzolanic reactivity of calcined kaolinitic clays by arapid alkaline solubility test. *RILEM Bookseries*, 16, 98-104. https://doi.org/https://doi.org/10.1007/978-94-024-1207-9 16.
- Cabrera, R., Kramer, J. L., & Pantaleón, G. (1983). Vinculación del magmatismo y los yacimientos meníferos de Cuba. *Cienc Tierra Espac*, *9*, 47-56.
- Calderón, I. M. (1997). Apuntes sobre el vulcanismo del Paleógeno en la región Sierra Maestra y características de su composición química. In *Estudios sobre Geología de Cuba* (pp. 446-462). Centro Nacional de Información Geolígica La Habana.
- Castillo, R., Fernández, R., Antoni, M., Scrivener, K., Alujas, A., & Martirena Hernández, J. F. (2010). Activación de arcillas de bajo grado a altas temperaturas. *Ingeniería de Construcción*, 25, 329-352.
- Cembareau. (2013). The role of cemnt in the 2050 lw carbon economy. . In. Brussels, Bélgica.

- Cisnero, A. (2010). Caracterizacion Geoquímica De Las Cortezas De Meteorización Aliticas En Cuba Oriental: Zonas De Moa-sagua De Tanamo. In. Moa: Instituto Superior Minero Metalúrgico de Moa "Dr. Antonio Núñez Jiménez". .
- CSI. (2010). Cement Industry Energy and CO2 Performance "Getting the Numbers

Right.".

- Damineli, B. L., & John, V. (2012). Developing Low CO2 Concrets: Is Clinker Replacement Sufficient? The Need of Cement Use Efficiency Improvement. Key Engineering Materials https://doi.org/10.4028/www.scientific.net/KEM.517.342
- Damtoft, J. S., Lukasik, J., Herfort, D., & Sorrentino, D. (2008). Sustainable development and climate change initiatives. *Cement and Concrete Research*, 38, 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008
- Díaz, A. A., Almenares Reyes, R. S., Carratalá, F. A., & Martirena Hernández, J. F. (2018). Proposal of a methodology for the preliminary assessment of kaolinitic clay deposits as a source of SCMs. *Bookseries*, 16, 29-34.
- Dopico, J. J., Martirena Hernández, J. F., & Day, R. L. (2008). Desarrollo de hormigones con aglomerante cal-puzolana fina como material cementicio
- suplementario. 171-178.
- EIA. (2013). International energy outlook 2013. In. Washington, EE.UU: Departmento de Energía. .
- Fernández, L. (2009). Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries. In. Faculté Sciences et Techniques de L'Ingeniur Lausanne: École Polytechnique Federale de Lausanne.
- Ferrara, L., Deegan, P., Pattarani, A., Sonebi, M., & Taylor, S. (2019). Recycling ceramic waste powder: effects its grain-size distribution on fresh and hardened properties of cement pastes/mortars formulated from SCC mixes. *Journal of Sustainable Cement-Based Materials*, 8, no.3, 145-160. https://doi.org/ https://doi.org/10.1080/21650373.2018.1564396.
- Furrozola, G., Judoley, C. M., Mojailovaskya, M. S., Mirilubov, Y. S., Novajatasjy, I. P., Núñez, A., & Solsona, J. B. (1964). *Geología de Cuba*.
- Gallo, R. (2010). Valoración del potencial de los recursos minerales para la industria del cemento en Cuba. *IGP, Instituto de reactivos y materiales, CEMVID.*
- Golovkin, L., Sviridov, M., López, A., & Sojo, L. (1978). Informe sobre los resultados del levantamiento geológico a escala 1:100 000 realizado en la parte occidental del maciso montañoso de la Sierra Maestra. In (pp. 155). La Habana. archivo de la Oficina nacional de Recursos Minerales, inédito.
- González Castellanos, D., & Batista González, R. (2009). Valoración del potencial de los recursos minerales para la insdustria de las materias de construcción a nivel municipal en la República de Cuba (1 ed.).
- Grechanik, T., & Norman, A. (1971). Informe sobre los trabajos geológicos de levantamiento a escala 1: 50 000 que se realizaron en la cuenca de los rios Cobre, Caña y Cauto. In. La Habana, archivo de la Oficina Nacional de Recursos Minerales, inédito.
- H. Yanguatin, J. Tobón, J. Ramírez. (2016). Reactividad puzolánica de arcillas caoliníticas, una revisión.
- Habert, G., d'Espinose de Lacaillerie, J., Lanta, E., & Roussel, N. (2010). *Envrional evaluationfir cement substitution with geopolymers* 2nd International Conference on Sustainble Construction Materials and Technologies,
- Hendriks, C., Worrell, E., & Jager, D. D. (1998). Emission reduction of greenhouse gases from the cement industry. Paper presented at the Proceedings of the fourth international conference on greenhouse gas control technologies. In.
- Höök, M., Zittel, W., Schindler, J., & Aleklett, K. (2008). A supply-driven forecast for the future global coal production. In A contribution to Association for the Study of Peak Oil and Gas (ASPO). Uppsala, Suecia.
- Hooton. (2011). Materiales Cementicios Suplementarios. In. Universidad Central Marta Abreu, Las Villas.

- Humphreys, K., & Mahasenan, M. (2002). Toward a Sustainable Cement Industry. Substudy 8: climate change. . In. Geneva, Suiza.
- Iturralde Vinent, M. (1996). "Estratigrafía del arco volcánico en Cuba". En: Ofiolitas y Arcos Volcánicos de Cuba, Projet 364. Inter. Geol. Correl. .
- Kesler, S. E. (1990). Metallogenic evolution of the Caribbean region. The Caribbean Region, The Geology of North America.
- Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. *Resources, Conservation and Recycling*, *57*, 30-35. https://doi.org/10.1016/j.resconrec.2011.09.016
- Kuzovkov, G., Arseniev, Y., Sánchez Cruz, R., & Quesada, R. (1977). Informe sobre los resultados del levantamineto geológicoa escala 1:1000 000 realiadas por la brigada Sierra Maestra en la pendiente sur de la cresta del Turquino en la parte oeste de la provincia de Santiago de Cuba durante los annos 1974-1977 In. Oficina nacional de Recursos Minerales, MINBAS, La Habana (inédito).
- Laverov, N. P., & Cabrera, R. (1967). Estructura geológica y algunas cuestiones relativa a la génesis del yacimiento "El Cobre" (Oriente). *Revista de Geología*, 1, 87-103.
- Martínez Conde, L. C., & Hurtado Cardona, M. A. (2014). Estudio y caracterización del residuo de la fabricación de tuberías en acero para determinar su uso en la producción de morteros y concretos. Universidad de Cartagena.]. Cartagena.
- Martirena, F. (2004). Una alternativa ambientalmente compatible para disminuir el consumo de aglomerante de clínker de cemento Pórtland: el aglomerante cal puzolana como adición mineral activa Universidad Central "Marta Abreu" de las Villas]. Santa Clara, Villa Clara, Cuba.
- Martirena Hernández, J. F. (2011). Context of Cementicious Materials in developing countries. In. Paper presented at the Pre Congresural courses, Madrid, España.
- Martirena Hernández, J. F., Middendorf, B., Gehrke, M., & Budelmann, H. (1998). Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. *Cement and Concrete Research*, 28, 1525-1536.
- Massazza, F. (1976). Chemistry of pozzolanic additions and mixed cements. *ILCemento*, 1, 3-38.
- Massazza, F. (1993). Pozzolanic cements. *Cement and Concrete composites*, 185-214.
- Müller, N., & Harnish, J. (2008). A blueprint for a climate friendly cement industry.
- Naranjo Quintero, R., Cruz Crespo, A., Perdomo González, L., Ramirez Tórrez, J., & Orbea Jiménez, M. (2018). Empleo de escorias de horno cuchara y de cenizas de paja de arroz como componentes de un fundente para recargue por soldadura. Minería y Geología, 34, no. 1933 8012, 331-344.
- ONEI. (2012). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. In (pp. 1155-1164). Cuba.
- ONEI. (2022). ANUARIOESTADÍSTICO DE CUBA 2021 Industria Manufacturera Edición 2022. In. Oficina Nacional de Estadística e Información, La Habana, Cuba.
- Papadakis, V. G., & Tsimas, S. (2002). Supplementary cementing materials in concrete: Part I: efficiency and design. *Cement and Concrete Research*, 32.
- Pérez, C., & García, D. (1997). Tectónica de la Sierra Maestra (sureste de Cuba). In G.Furrazola, K. Núnez (eds.). *Estudios sobre Geología de Cuba*, 464-476.
- Pfeffer, W. H. (1961). Informe sobre mina "El Cobre". In. CNFG, La Habana, inédito. Quevedo Gómez, S. G., & San José Lombera, J. T. (2018). ESCORIAS BLANCAS DE ACERÍA (LFS) EN MEZCLAS HIDRÁULICAS. SU VALORACIÓN Y DISCUSIÓN COMO MATERIA PRIMA. In. Universidad del País Vasco.
- Quintana. (2005). Relación entre las propiedades geotécnicas y los componentes puzolánicos de los sedimentos pampeanos. In. Universidad Nacional de Córdoba.

- Quintas Caballero, F., Proenza Fernández, J. A., & Castillo González, J. L. (1995). Análisis tectono-sedimentario de la paleocuenca Sabaneta. Minería y Geología. 12, 3-8.
- Rabilero, A. (1993). Una contribución al estudio del aglomerante cal-puzolana. Reporte al IX Forum de Ciencia y Técnica.
- Ramezanianpour, A. A. (2014). Cement Replacement Materials. Properties, Durability, Sustainability Springer-Verlag Berlin Heidel, Heidelberg SpringerVerlag Berlin Heidel, Heidelberg. In. London, Netherlands.
- Rodríguez, C. (2014). Evaluación de propiedades físico-mecánicas en morteros de albañilería a partir de cementos con sustituciones de clínquer por arcillas calcinadas y caliza. In. Universidad Central Marta Abreu de las Villas, Villa Clara. Cuba.
- Rodríguez Suárez, L., Hernández Flores, A., & Rodríguez Acosta, C. (2017). Diversificación del uso industrial del yaciminento Río del Callejón: obtención de sulfato de aluminio para tratamiento de agua. *Minería & Geología*, 33, 177-190.
- Rosell, M. (2010). Zeolita Natural Cubana del Tipo Clinoptilolita-Heulandita como Material Cementicio Suplementario en Hormigones. Universidad Central «Marta Abreu» de Las Villas, Santa Clara.
- Salazar, A. (2002). Síntesis de la tecnología del concreto. Una manera de entender a los materiales compuestos *Corporación ConstruirSchneider*.
- Salton, H. G. (1961). Reporte sobre la Mina Grande del Cobre. In. CNFG, La Habana, inédito.
- Samanta, C., & Chatterjee, M. K. (1981). Pozzolana and Pozzolanic Cements A Review Part I: Pozzolan. *Transactions of the Indian Ceramic Society*, 40, 37-43. https://doi.org/10.1080/0371750X.1981.10822517
- Schneider, J., Martinez Alier, J., & Kallis, G. (2011). Sustanciable Degrowth. *Journal of Industrial Ecology*, 15(5), 654-656.
- Scrivener, K. (2007). Durability course. In. EPFL, Switzerland.
- Scrivener, K. L. (2014). Options for the future of cement. *The Indian Concrete Journal*, 88(11-21).
- Sgarlata, C., Formia, A., Siligardi, C., Ferrari, F., & Leonelli, C. (2022). Mine clay washing residues as a source for alkali-activated binders. *Materials.*, *15*, *no. 1.*, 1-14.
- Siverio Fernández, S. (2016). Evaluación de arcillas de bajo grado de caolinita del depósito El Yigre para la producción de cemento de bajo carbono. . Universidad Central "Marta Abreu" de Las Villas.
- Snellings, R. (2011). *Mineralogical study of the pozzolanic properties of natural zeolites*. Universiteit Leuven, Katholieke].
- South, W., & Hinczak, I. (2001). New Zealand Pozzolans-An ancient to a modern dilemma. In. Michigan, USA: American Concrete Institute.
- Taber, S. (1931). The structure of the Sierra Maestra near Santiago de Cuba. *The Journal of Geology*, 39.
- Tironi, A. (2013). Materiales cementicios de baja energía. Activación térmica de arcillas, relación entre estructura y actividad puzolánica. *Cuba Journal of Geology*, *36*, 532-557.
- Tironi, A., Trezza, M., Irassar, E., & Scian, A. (2012). Thermal activation of bentonites for their use as pozzolan [Activación térmica de bentonitas para su utilización como puzolanas]. . *Revista de la Construccion 11, no. 1.*, 44-53.
- Tironi, A., Trezza, M., Scian, A., & Irassar, E. F. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. *Construction and Building Materials.*, 28, no.1., 276-281.
- Toledo, R. D., Gonçalves, J. P., Americano, B. B., & Fairbairn, E. M. R. (2007). Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. *Cement and Concrete Research*.

- U.S. (2017). In Geological Survey, Mineral commodity summaries 2017. U.S USA.
- UNE. (2011). Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes.
- Valdés Uribe, J. D. (2019). DESEMPEÑO DE MATERIALES CEMENTANTES SUPLEMENTARIOS EN RESISTENCIA A COMPRESIÓN E HIDRATACIÓN EN PASTAS DE CEMENTO. In. Universidad de Santo Tomás.
- Vizcaíno, L. M. (2014). Obtención de un material puzolánico de alta reactividad a partir de la activación térmica de una fracción arcillosa multicomponentes. In. Universidad Central Marta Abreu de Las Villas.
- Vizcayno, C., Gutiérrez, R. M., Castello, R., Rodriguez, E., & Guerrero, C. E. (2010). Pozzolan Obtained By Mechanochemical And Thermal Treatments Of Kaolin. *Applied Clay Scienc*, 49, 405-413.
- Xiomara Cazañas Díaz, J. L. T. Z., Waldo Lavaut, Jorge L Cobiella. (2017). metalogenia de Cuba.