Alina Rodríguez Infante

Manual de Geomorfología

Alina Rodríguez Infante

Manual de Geomorfología

Departamento de Ciencias Geológicas Básicas Instituto Superior Minero Metalúrgico, Moa Ministerio de Educación Superior

PRÓLOGO.

La confección del presente manual se acordó en el Departamento de Ciencias Geológicas Básicas del I.S.M.M., teniendo en cuenta la falta de bibliografía existente en el centro para el estudio de la asignatura Geomerfología.

Para el desarrollo de los diferentes Capítulos se tomaron como base las conferencias docentes del Departamento, por lo que se tratan de forma resumida los conceptos y criterios geomorfológicos fundamentales que debe conocer el estudiante durante el estudio de la materia, la cual se imparte en el tercer año de la especialidad de Ing. Geológica.

El manual está estructurado por temas que corresponden a los contenidos planteados por el programa analítico de la asignatura.

Alina Rodriguez Infante

INDICE		
CAPÍTULO	1.	Introducción
CAPÍTULO	2.	Algunos conceptos fundamentales de
* ***		la Geomorfologia5
CAPÍTULO	3.	Análisis de los procesos morfogéni-
		cos
CAPÍTULO	4.	Meteorización de las rocas y movi-
		mientos gravitacionales 17
CAPÍTULO	5.	Procesos fluviales como modeladores
•		del relieve
CAPÍTULO	6.	Relieve desarrollado en regiones de
	ē	rocas plegadas
CAPÍTULO	7.	Relieve en estructuras falladas 66
CAPÍTULO	8.	Relieve cársico
CAPÍTULO	9.	Geomorfología de las regiones cos-
		teras
CAPÍTULO	10.	Uso de los mapas topográficos y fo-
		tos aéreas en investigaciones geo-
		morfológicas
CAPÍTULO	11.	Geomorfología y neotectónica 96
CAPÍTULO	12.	Aplicación de las investigaciones
	20	geomorfológicas
CAPÍTULO	13.	Geologia del Cuaternario 109
CAPÍTULO	14,	Métodos de investigación de los
		sedimentos cuaternarios

CAPÍTULO I INTRODUCCIÓN

La geomorfología es una ciencia natural que se encarga del estudio del relieve de la superficie terrestre, tanto por su forma como por su origen y desarrollo. (Según esta definición, podemos ver que el relieve oceánico es también objeto de estudio para los geomorfólogos).

Las formas del relieve terrestre surgen por la interacción de los procesos que ocurren en el interior de la litósfera o procesos endógenos y aquellos que se desarrollan en la superficie de la misma o procesos exógenos. A su vez este relieve creado es modificado por estos mismos procesos antagónicos.

La tierra presenta en su relieve rasgos de las diferentes órdenes que van desde las grandes formas planetarias como continentes y océanos hasta las cárcavas formadas por el agua de arroyada o los fenómenos cársicos. No obstante a esto la geomorfología no tiene como objetivo el estudio de las formas de primer orden, pues estas son parte del estudio de la geotectónica, siendo de gran interés para ella el estudio del origen y desarrollo de aquellas formas de menores dimensiones como las cadenas montañosas, cuenças fluviales y lacustres, etc.

Nosotros en el curso nos referiremos fundamentalmente al estudio de los procesos geológicos formadores de relieve en los climas húmedos, excluyendo el relieve producto de la actividad eólica y glaciar, concentrando nuestra atención en la relación existente entre la estructura geológica y la litología con el relieve.

Respecto a las formas del relieve del fondo cceánico, existe el concenso bastante generalizado de no incluirlo dentro del campo de estudio de la geomorfología, pues los procesos que lo controlan son muy diferentes a los que operan sobre la superficié de los continentes.

La geomorfología es una ciencia que guarda estrecha

relación con la geología física, la geología estructural y la hidrogeología, dentro de la geología, y muy estrecha relación con la geografía física por lo que se considera como ciencia intermedia entre la geología y la geografía.

Desarrollo histórico

El relieve de la superficie terrestre ha atraido siempre la atención de los hombres que han tratado de explicarlo de una forma u otra desde los inicios de la humanidad. Sin embargo, las explicaciones sugeridas en la antigüedad y Edad Media eran de naturaleza fantástica, carente en la inmensa mayoría de los casos, de un basamento científico mínimo.

El desarrollo de las modernas ideas geomorfológicas comenzó hacia el siglo XVI. Leonardo da Vinci (1452-1519) reconoció que los valles eran originados por la acción de las corrientes fluviales. Importantes precursores de la geomorfología fueron los franceses Desmanest, Buffon y Guetthard (siglo XVIII), quienes estudiaron los valles fluviales y llegaron a la conclusión de que estos habían sido originados por los propios ríos que lo cruzaban a través de un lento proceso erosivo. Estas observaciones contribuyeron a ir demoliendo poco a poco, las ideas catastróficas existentes en aquellos tiempos, que explicaban el surgimiento de las diversas formas del relieve por grandes cataclismos.

Una trascendental importancia para el desarrollo de las ideas geomorfológicas y para la geología en general, tuvieron las investigaciones de James Hutton (1726-1797), al demostrar que el relieve era el resultado de la acciór conjunta de diversos agentes geológicos que habían operado durante considerables lapsos de tiempo, además de ser el creador del concepto del actualismo.

Las ideas de Hutton fueron expuestas por su autor en varias publicaciones de circulación limitada. La divulgación amplia de las mismas se debe a la labor de John Playfair quien editó a inicios del siglo XIX el libro titulado "Ilustraciones a la teoría Huttoniana de la Tierra".

Las ideas de Hutton y Playfair así como las investigaciones posteriores de Lyell (1797-1875), reunidas en el libro "Principios de Geología" dejaron establecido el papel de las corrientes fluviales en el modelado del relieve.

El reconocimiento de los glaciares como modeladores del relieve fue hecho hacia mediados del siglo XIX, demostrándose por aquel entonces la existencia de extensas glaciaciones en épocas recientes en Europa gracias a los trabajos de geólogos suizos como Charpentier, de Agassiz y Venetz. Por esta misma época comenzó a prestársele atención a la erosión marina.

A fines del siglo XIX se llevaron a cabo en Estados Unidos, especialmente en su región occidental, toda una serie de trabajos de mapeo geológico que tuvieron amplia repercusión en el desarrollo de la geomorfología. Entre los investigadores que trabajaron en esa área merecen especial reconocimiento, por los nuevos conceptos e idoas sobre el relieve y su desarrollo, los nombres de Powell, (1834-1902), Hutton (1841-1912) y Gilbert (1845-1918).

Una figura capital en la historia de la geomorfología es William Davis (1850-1934). Davis, desarrollando y ampliando las ideas de sus predecesores, creó una sólida fundamentación teórica a la geomorfología clara y pedagógicamente elaborada. Davis fue el creador de la teoría de los ciclos de erosión. Es a partir de la obra de Davis en Estados Unidos y de Penok en Alemania, que la geomorfología toma un carácter de ciencia independiente. A par-

tir de ellos se desarrollan numerosos trabajos dedicados a profundizar en diversos aspectos de la formación y evolución del relieve.

Una gran importancia en la evolución de las ideas geomorfologicas en Europa Central y la URSS tuvieron los trabajos del alemán Walter Penck publicadas en la tercera y cuarta décadas de este siglo. Penck puso particular énfasis en el desarrollo simultáneo de los movimientos tectónicos y la formación y evolución del relieve.

Durante los años 40 y 50 del presente siglo los estudios geomorfológicos se ampliaron considerablemente. De gran importancia durante este período fue la introducción por parte de los geomorfólogos soviéticos, de los primeros mapas geomorfológicos.

Con el desarrollo de la geomorfología, al igual que en toda ciencia, se observa con el tiempo, una ramificación de los conocimientos. En el caso de la geomorfología esta viene dada, de acuerdo al geomorfólogo Smirnov, por dos direcciones fundamentales en los estudios sobre el relieve en los últimos 20 años. Estas direcciones son:

- 1) La geomorfología climática
- 2) La geomorfología estructural

La primera dirección presta especial atención al factor climático como modelador del relieve. Para la segunda es de mayor interés la interacción de la tectónica y los procesos exógenos que da lugar a la formación del relieve. Es natural que nosotros, como geólogos, nos es más interesante y útil esta segunda dirección y sobre ella se hará enfasis en nuestro curso.

CAPÍTULO 2 ALGUNOS CONCEPTOS FUNDAMENTALES DE LA GEO-MORFOLOGÍA

Existen una serie de conceptos básicos para la geomorfología que constituyen la piedra angular de los estudios geomorfológicos. Algunos de estos conceptos han sido, estudiados en otros cursos, pero por su importancia es necesario mencionarlos.

Primer concepto:

Los mismos procesos y leyes físicas que operan en la actualidad operaron en el pasado geológico

Este es el principio del actualismo enunciado por Hutton en 1785 en su esencia plantea que el presente es la clave del pasado, lo que significa que estudiando el origen y evolución del relieve actual podemos suponer el origen y evaluación de esas mismas formas en el pasado.

La aplicación sin reservas de este principio puede conducir a errores que hay que tener en cuenta la serie de cambios ininterrumpidos que ha sufrido la tierra y que han conducido con el tiempo a progresivos cambios geológicos, expresado en la modificación de la acción o intensidad de los procesos geológicos, por lo que es necesario en cada momento realizar las consideraciones sobre los factores climáticos y geológicos que condicionan el relieve.

'egundo concepto:

La estructura geológica es un factor de control dominante de la evolución del relieve y se refleja en éste

Si tenemos en cuenta que el relieve no es más que el veflejo en la superficie de las propiedades físico-quimicas de las rocas que ocupan una posición u otra en dependencia del control geólogo-estructural a que ha sido soretido y además de esto tenemos en cuenta que las formas

geomorfológicas quedan establecidas después que las estructuras geológicas sobre las cuales el relieve ha sido modelado, podemos comprebar la veracidad del concepto.

Un ejemplo de la influencia de la estructura en la topografía lo tenemos en Las Yaguas, municipio Santiago de Cuba, donde el núcleo del sinclinal loreto está dado por una meseta escarpada sobre la Fm. Conglomerado Camarones, encontrándose en los flancos las areniscas arcillosas de la Fm. San Luis, las calizas de la Fm Charco Redondo y las tobas en la Fm El Cobre en su parte más extensa. Esta posición de las rocas, dada por la estructura geológica ha permitido el desarrollo del paisaje de cuesta, así como la alineación del eje de las cadenas con el eje del sinclinal.

Tercer concepto:

Los procesos geomorfológicos dejan su huella distintiva en el relieve y cada una desarrolla un conjunto propio de formas del relieve

De cursos procedentes es conocido que cada uno de los variados agentes que actúan en la superficie a través de cualquier proceso geológico exógeno, da lugar a un conjunto de formas típicas como por ejemplo los procesos fluviales originan barrancos, cañadas, llanuras aluviales, etc. Los glaciares originan los valles en "U", las morrenas glaciares y otros accidentes.

Es decir que reconociendo las formas del relieve, podemos obtener informaciones sobre los agentes modeladores que operan en su formación, aún cuando estos no operen en la actualidad.

Cuarto concepto:

Los ciclos o etapas del desarrollo del relieve se caracterizan por una secuencia de formas distintivas dada por la

acción de los diferentes agentes erosivos sobre la superficie terrestre

En este principio se formula la idea de que la superficie de la tierra, sometida a la acción de los diferentes agentes erosivos, pasa por una secuencia de forma de relieve determinadas de acuerdo al agente actuante. Estas etapas de la evolución del relieve se acostumbran a llamar:

Juventud, Madurez y Vejez. Para las regiones húmedas ha Lido estudiado este ciclo en la asignatura Geología General, pero el mismo existe también para las regiones áridas regiones glaciares, etc.

quinto concepto:

La complejidad de la evolución geomorfológica es más común que la simplicidad

El relieve de una región difícilmente puede ser explicado por la acción de un solo agente erosivo actuante durante un ciclo. Puede predominar un proceso morfogenético, pero ser en si el resultado de la acción de varios agentes y por otra parte los rasgos fundamentales del relieve pueden haber sido originados durante el presente ciclo erosivo pero observarse en él formas residueles originadas en ciclos anteriores.

Es decir, que tanto desde el punto de vista de su génesis como de su desarrollo histórico, el relieve es de gran complejidad.

De acuerdo a esta complejidad se ha propuesto ciasificar el relieve en cinco categorías diferentes:

- a) simples: es el relieve resultante de un proceso morfogenético dominante;
- b) compuesto: es el relieve resultante de la acción conjunta de dos o más procesos geomorfológicos.
 Ejemplo, una región costera con terrazas marinas

- cortadas por algunos cañones fluviales profundos como se observa en el extremo oriental de Cuba;
- c) monocíclico: se han formado durante un solo ciclo erosivo, constituyendo una pequeña parte del relieve actual, generalmente relacionado con superficies recientemente elevadas del fondo marino;
- d) policíclicos: son los originados por dos o más ciclos de erosión. Es el más común en la superficie del planeta;
- e) desenterrado o exhumado: es el relieve originado en el pasado geológico y posteriormente cubierto por sedimentos o rocas volcánicas. Más tarde en el desarrollo geológico de la zona, la cobertura puede ser erosionada parcial o totalmente y el antiguo relieve ser expuesto nuevamente a la superficie.

Sexto concepto:

Sólo una pequeña parte del relieve actual es más antiguo que el Paleógeno, siendo la mayor parte del mismo no más antigua que el Pleistoceno

Investigaciones geomorfológicas realizadas sobre diferentes regiones del planeta evidencian que el relieve de la superficie terrestre es muy joven originado durante el Cuaternario y en su casi totalidad no es más antiguo que el Mioceno.

Un ejemplo de esto lo es Cuba, donde una parte de su superficie está cubierta por formaciones marinas del Mioceno medio y superior, los cuales originalmente cubrieron áreas mayores, por lo que es de suponer que el relieve de la mayor parte de la misma es post Miocénico y con gran seguridad Pleistocénico.

Séptimo concepto:

Una interpretación correcta del relieve actual es imposible sin una completa apreciación de las múltiples influencias de los cambios geológicos y climáticos durante el Pleistoceno

Las grandes glaciaciones Pleistocénicas afectaron no sólo a las enormes extensiones cubiertas por los glaciares, sino que dejaron su influencia en todo el planeta, incluso en las regiones tropicales.

Esta influencia no se limitó sólo a un descenso de las temperaturas durante las glaciaciones y aumento en los períodos interglaciares, Hay numerosos datos que prueban que por ejemplo, durante las glaciaciones el clima de muchas regiones áridas de la actualidad era considerablemente más húmedo que el actual. En Cuba, aún cuan-10 este problema no ha sido estudiado profundamente, parece que existieron alternancias de climas húmedos y secos. En nuestro caso, la principal influencia de las glaciaciones está en las fluctuaciones del mivel del mar durante el Cuaternario, las que alcanzaron más de 100 m. Este proceso, además de influir en la posición de la linea de costa, que debió ser muy móvil en el Pleistoceno, determinó una rápida profundización de los cauces fluviales durante los períodos glaciales, motivados por la rápida disminución del nivel del mar; en tánto que en los períodos interglaciares, en los cuales el nivel del mar llegó a estar incluse más alto que en la actualidad, los ríos rellenaban sus valles con aluviones.

Octavo concepto:

Pera comprender la importancia de los procesos geomorfológicos es necesario conocer la climatología

El clima es un factor determinante en los procesos exógenos, el determina el tipo e intensidad de las preci-

pitaciones, las variaciones diarias y estacionales de temperatura, velocidad y dirección del viento, etc. El clima además determina en gran medida el tipo de vegetación. Todos estos factores a su vez condicionan la naturaleza e intensidad de los procesos morfogénicos exógenos. CAPÍTULO 3 ANÁLISIS DE LOS PROCESOS MORFOGÉNICOS

Las características del relieve son el resultado de la interacción de múltiples agentes o procesos morfogénicos, los que pueden agruparse en dos grandes grupos: exógenos y endógenos.

Los procesos exógenos son aquellos que se desarrollan en la superficie terrestre y toman como fuente de energía los rayos solares y son a su vez auxiliados por la fuerza de gravedad. La acción de estos factores exógenos son las que condicionan los procesos de meteorización, erosivos, circulación de las aguas, etc.

Los procesos endógenos son los que se originan en el interior de la tierra; su fuente de energía es la energía interna del planeta. Estos están relacionados con los movimientos oscilatorios de formación de fallas y pliegues, actividad volcánica, etc.

La acción de estos dos grupos de procesos la estudiaremos por separado y su interrelación en la formación del relieve.

Procesos exógenos. La acción de los procesos exógenos tiende por una parte a rebajar la altura de las zonas elevadas del relieve y por otra a rellenar las depresiones existentes en el mismo, así los procesos exógenos tienden a nivelar la superficie del planeta tratando de reducirla a una superficie plana.

Los procesos exógenos se dividen en dos grandes gru-

- a) denudativos:
- b) acumulativos.

Los procesos denudativos son aquellos que provocan la reducción de forma lenta de las elevaciones del relieve. Los procesos denudativos incluyen la meteorización,
los movimientos gravitacionales de suelos y rocas y la
erosión llevada a cabo por diferentes agentes.

La meteorización implica la destrucción mecánica y la descomposición química de las rocas expuestas a la condiciones de la superficie terrestre.

En función de las condiciones climáticas, la litología y el relieve, esta puede tener características diferentes así como predominar un proceso de descomposición química o de desintegración física.

La meteorización afecta solamente a pequeños espesores de rocas cerca de la superficie, aunque excepcionalmente puede alcanzar decenas de metros en condiciones muy favorables. Ella como tal crea las condiciones a los procesos erosivos y movimientos gravitacionales.

La erosión como proceso exógeno consiste en el arranque, transporte y deposición de los materiales detríticos por medio de los agentes erosivos como el aire, aguas superficiales, aguas subterráneas, glaciares, etc.

El transporte de los materiales por los agentes erosivos cesa al variar los factores que condicionan el que estos puedan ser transportados y es cuando se produce la acumulación ya sea temporal o permanente.

en la acumulación de los sedimentos o detritos rocosos cuando el medio de transporte de los mismos disminuye su energía cinética hasta un valor en que no le es posible transportarlos. Esta acumulación como ya dijimos anteriormente puede ser temporal o definitiva. Por ejemplo en un río la competencia y capacidad de carga va a variar en dependencia de las condiciones climáticas, aumentando estos parámetros durante las épocas de crecida por lo que al mismo disminuir su caudal y velocidad va depositando en su cauce la carga más gruesa, la cual puede ser removida en la próxima crecida. Este es un caso de acumulación temporal. De esta forma el río va removiendo los aluviones aguas abajo hasta que se depositan en la llanu-

ra aluvial o son llevadas al mar donde olas y corrientes se encargan de transportarlos hasta una zona de equilibrio.

Este proceso ocurre de forma similar en todos los medios erosivo-acumulativos, dando como resultado en conjunto al transporte de los materiales rocosos de las regiones más elevadas hacia las depresiones continentales o hacia el mar.

Este proceso transcurre lentamente, pero debido a las grandes extensiones del tiempo geológico este podría conducir a la destrucción del relieve en la superficie del planeta y la reducción de la misma a una superficie plana, lo cual no ocurre debido a la existencia de los procesos endógenos.

Procesos endógenos. Como dijimos ya anteriormente los procesos endógenos son aquellos procesos geológicos relacionados con la energía interna del planeta y los mismos pueden manifestarse de forma repetida y en ocasiones de forma catastrófica.

Estos procesos son de naturaleza muy variada que van desde la transformación de las rocas en el interior de la corteza terrestre por efecto de la presión, temperatura y actividad química (fenómeno conocido como metamorfismo) hasta la salida del magma hasta la superficie o su penetración hasta diferentes profundidades de la corteza terrestre durante la actividad magmática.

No menos importantes son los movimientos verticales y horizontales de la corteza. Estos movimientos corticales van a influir sobre la forma del relieve, ya que determinan la formación de las cadenas montañosas así como de las depresiones continentales y los océanos.

cos, procesos exógenos y el velievo resultante

Ya con anterioridad vimos la influencia que por separado realizan los procesos exógenos y endógenos sobre la formación y evaluación del relieve. A continuación analizamos la relación existente entre ambos procesos y el relieve resultante.

Debemos partir considerando que los grandes rasgos del relieve tienen un origen tectónico, pues es evidente que las cordilleras montañosas así como las grandes depresiones de la superficie son originadas a través de los movimientos orogénicos y epirogénicos que afectan a las rocas de la corteza terrestre.

Una vez se inicia la acción de los procesos endógenos, se intensifica la actividad de los agentes de superficie e incluso pueden iniciarse procesos exógenos que con anterioridad no afectaban a la región.

Un ejemplo de lo expresado anteriormente, cuando un sector de la corteza inicia su proceso de ascenso, conjuntamente con su levantamiento "se intensifica" la actividad de los agentes denudativos del relieve originándose por la acción combinada de los diferentes agentes una red de cañadas y valles.

Anteriormente nos referimos a que se intensifica la actividad de los agentes denudativos partiendo de que dicho sector de la corteza se encontraba expuesto a los mismos en una posición inferior. Sin embargo, si consideramos que la zona con anterioridad formaba una depresión de la corteza continental u oceánica donde ocurría la acumulación de los materiales provenientes de las zonas elevadas, veremos que en el movimiento de ascenso cesará la agradación y se iniciará la denudación del relieve.

Si por lo contrario, en lugar del levantamiento ocurre el descenso de un sector de la corteza terrestre se forma en el una depresión hacía la cual arrollan las aguas superficiales. Si esta depresión ocurre en el inte-

rior del continente hacia ellas drenan las corrientes fluviales de las zonas advacentes más elevadas, depositando sus aluviones. Si se origina en una zona advacente al mar, la subsidencia puede provocar una transgresión marina.

Con esto hemos podido comprobar que las formas menores del relieve tienen un origen exógeno, mientras que con los procesos endógenos se encuentran relacionadas las grandes formas de este.

También quedó evidenciado que estos procesos actúan en sentido contrario, pudiendo esquematizar los tipos de relieve que se pueden encontrar viendo la relación entre estos dos procesos, para lo cual designamos por + T a los movimientos tectónicos de ascenso; por - T a los movimientos tectónicos de descenso, D a los procesos denudativos y A a los procesos acumulativos.

De esta forma obtendremos que:

Cuando + T D, es decir cuando los movimientos tectónicos ascensionales son de mayor intensidad que los procesos denudativos, la zona se mantiene con un relieve
elevado, siendo mayor la elevación de la región sobre las
zonas adyacentes a medida que sea mayor en magnitud e intensidad los movimientos de ascenso.

Cuando - T = A, es decir cuando los movimientos de descenso son compensados por la acumulación de sedimentos, encontraremos un relieve llano con espesores considerables de sedimentos continentales. Si el descenso ocurre en la periferia de los continentes la subsidencia compensada se refleja en la formación de deltas o llanuras costeras con espesores considerables de sedimentos continentales y marinos.

Cuando T D, o sea cuando los movimientos tectónicos sean prácticamente nulos, o despreciables ante la intensidad de los procesos denudativos, estos últimos destrui-

rán todas las formas del relieve desarrolladas en otras condiciones tectónicas, originándose su periplano cubierto por una corteza de meteorización.

Estas relaciones entre les procesos endógenos y exógenos vistas anteriormente son los de mayor interés desde el punto de vista geomorfológico ya que van a determinar las características generales del relieve de una región.

No obstante a ello, debemos tener en cuenta que la interrelación entre los procesos endógenos y exógenos condicionan el origen de rasgos de menores dimensiones, pudiendo citar como ejemplo en el desarrollo de la corteza de meteorización, el agrietamiento de las rocas favorece e incluso determina el desarrollo e intensidad del aroceso.

Sobre este tema podemos concluir que en la formación del relieve actúan los procesos endógenos y exógenos; que los procesos exógenos tienden a rebajar las elevaciones y rellenan las depresiones producidas originalmente por la acción de los movimientos tectónicos. Es decir el proceso de formacion del relieve es un ejemplo a escala planetaria de la ley de unidad y lucha de contrarios del materialisme dialéctico.

También podemos resumir que la relación existente entre la velocidad y duración de los movimientos tectónicos por un lado y la intensidad de los procesos acumulativos y denudativos por otro van a determinar el relieve de los diversos sectores de la corteza terrestre.

Por último podemos decir que las estructuras tectóricas antiguas o muertas van a actuar pasivamente en la formación del relieve.

CAPÍTULO 4 METEORIZACIÓN DE LAS ROCAS Y MOVIMIENTOS GRAVITACIONALES

Con anterioridad nos habíamos referido de forma generul a los procesos exógenos que actúan en la formación y evolución del relieve. Vamos a continuación a particularizar en la meteorización, como proceso consistente en la destrucción de los materiales rocosos en las condiciones existentes en la superficie del planeta, sin que ocurra durante el proceso el transporte o acarreo de los materiales producidos por este.

De cursos precedentes ya es conocido que los procesos de meteorización se dividen en físicos y químicos, considerándose la meteorización física cuando no hay cambio en la composición química de los materiales y estos sólo se fragmentan en parte menores; y químicas, cuando si ocurre este cambio. Ambos tipos actúan de forma general en conjunto, aun cuando en dependencia de las condiciones climáticas, roca madre, etc. predomine une sobre otro.

El producto de los procesos de meteorización es el suelo, el cual podemos definir como la parte natural de la superficie de la tierra caracterizada por capas paralelas a la superficie, resultantes de la modificación de la roca madre por procesos químicos, físicos y biológicos que operan bajo condiciones ambientales particulares variables, durante varios períodos de tiempo. En esta definición queda establecido que las condiciones bajo las cuales se originan un determinado suelo pueden variar con el transcurso del tiempo y con ellas sus características, lo cual está en concordancia con el quinto principio de la geomorfología.

El preceso de formación de los suelos está determinado por varios factores que de una forma variable condicionan la intensidad y tipo de meteorización. Estos factores van a ser:

- a) clima;
- b) topografia;
- c) roca madre;
- d) complejo biológico desarrollado en el suelo (biota);
- e) tiempo.

Vamos a ver a continuación la influencia de cada uno de estos factores en la formación del suelo.

Clima: Este es uno de los principales factores, sobr todo en la determinación del tipo de meteorización. Es ya conocido por cursos precedentes que en los climas desérticos y semidesérticos existe un predominio de los procesos de desintegración mecánica debido fundamentalmente a las variaciones de temperatura y a la poca humedad del medio.

De igual forma en las zonas polares y subpolares pre dominan los procesos de desintegración mecánica por la acción de cuña del agua al congelarse en poros y grietas de las rocas.

En los climas tropicales y subtropicales la meteorización es más intensa y fundamentalmente los procesos de descomposición química, debido a la abundancia de agua y organismos que activan el proceso.

Antes de analizar la influencia de otros factores es necesario que quede establecido que aun cuando en una zo na climática existe predominio de uno de los procesos de meteorización, no excluye la courrencia de otro proceso, ausque de menor intensidad.

Topografía (rélieve): La influencia del relieve en el desacrolle de los suelos es de gras importancia, ya que en dependencia da la inclinación del terreno está la intensidad de arrastre de los materiales por la acción de las aguas salvajes. Es por esto que en las zonas de

grandes ángulos de pendiente los procesos formadores de suelo pierden su continuidad en el tiempo ya que los procesos erosivos remueven a los productos meteorizados, quedando en estas condiciones suelos de muy poca potencia faltando a menudo los horizontes superiores e incluso quedando la roca fresca (no alterada) expuesta a los agentes de intemperismo.

De igual forma en las zonas muy llanas veremos que el desarrollo del suelo ocurre lentamente, y aun cuando en los mismos pueden observar todos los horizontes el espesor total del mismo es poco. Esto está dado fundamentalmente por la poca velocidad de infiltración de las guas por su bajo ángulo de pendiente e igualmente por el movimiento lento de las aguas subterráneas, las cuales de cargan rápidamente de iones disminuyendo así su acción sobre las rocas.

Queda de esta forma establecido que en las zonas de montañas bajas o de relieve levemente ondulado es donde existen las condiciones topográficas óptimas para el desarrollo de los suelos, ya que la inclinación del relieve es lo suficientemente grande para permitir el recambio periódico de las aguas y lo suficientemente pequeño para impedir la destrucción del suelo por los agentes erosivos de superficie.

El estrecho vinculo existente entre el relieve y el desarrollo de los suelos, se demuestra claramente en los estudios realizados por Bugelski y Formell sobre las lateritas cubanas. Ellos han propuesto cinco zonas en el perfil de las lateritas las cuales de abajo hacia arriba son:

- a) zona de ultrabasitas poco alteradas;
- b) zona de ultrabasitas lixiviadas, compuestas per recas muy alteradas, friables, que se desmenuzan muy fácilmente;

- c) zona de nontronitas (variedad ferresa de la montmorillonita;
- d) zona de beres estructurales, compuesta por óxidos de Fe en los cuales se conservan las estructuras de la roca original;
- e) zona de ocres inestructurales, en los que se borran los rasgos estructurales de la roca madre y abundan las concresiones de óxidos de hierro (perdigones).

Estas cinco zonas representan el perfil completo de las lateritas el cual no se observa en todas las localidades. El desarrollo del mismo depende del relieve existente. El perfil completo puede observarse en regiones con un relieve de montañas bajas. Tal es el caso de los yacimientos situados en las cotas inferiores de Nicaro como Sol-Libano, Ocujal, etc.

En las partes más elevadas del yacimiento Nicaro como nor ejemplo en las zonas de Los Mulos, el drenaje subterráneo es mucho más rapido y las pendicites más abruptas amentan la efectividad de la erosión de las aguas salvajes. En estas condiciones la formación de ocres estructurales transcurre muy rápidamente y en los perfiles no se presenta la zona de nontronitas.

En las regiones de relieve muy abrupto como por ejemple la loma de la Mensura en Pinares de Mayarí, el Pico Cristal, etc. que constituyen las mayores elevaciones del NE de la antigua provincia de Oriente, las pendientes son tales que no permiten la acumulación de los productos de la meteorización y solamente se mantiene en este caso la zona de ultrabasitas poco alteradas, faltando los horimentes superiores.

Después de vistos los ejemplos anteriores, es evidente que el estudio del relieve puede tener una gran importancia en la evaluación de los yacimientos lateráticos,

puesto que en diversas situaciones geomorfológicas se originan distintos tipos de perfiles determinados por estas. Es por esa razón que en los últimos años se ha iniciado el estudio de la geomorfología de los yacimientos interíticos, ya que a través de ellos puede obtenerse más información preliminar valiosa, con economía de recursos.

Moca madre: Este factor influye determinantemente en la formación de los suelos, fundamentalmente en los inicios del preceso ya que cada roca se comportará de forma diforente ante los agentes de intemperismo en función de aus propiedades físicas y su composición química.

Es lógico pensar que en igualdad de condiciones climáticas y topográficas, la intensidad de meteorización no rorá la misma en las rocas serpentiníticas que en las councitas. De igual forma en un mismo tipo litológico el proceso será más intenso en aquellas zonas más afectadas por el agrietamiento ya que esto provocará un aumento de las superficies expuestas a los agentes meteóricos.

Complejo biológico desarrollado en el suelo: Este fuctor va a influir tanto en la intensidad de los procesos de meteorización como en el tipo de proceso dominan-

La abundancia de organismos en el suelo activa el quimismo del medio, favoreciendo la descomposición química de las rocas, mientras que en las zonas de vegetación típica de bosques, el crecimiento y desarrollo de las ruíces faforecen la desintegración mecánica de los mismos.

Es también conocido que de estos factores dependen también la extensión de afloramientos rocosos expuestos los agentes erosivos, por lo que de ella depende además l desarrollo continuo de los suelos, así como la composición final en dependencia de la cantidad de materia occumica en descomposición.

Tiempo: Este factor controlador de los procesos de meteorización, no creemos necesario explicarlo ya que es conocido por cursos precedentes la dependencia que del mismo tiene la intensidad de los procesos de meteorización.

Después de analizados los diferentes factores que condicionan los procesos formadores de suelo, es necesario conocer que hay suelos que no se han originado bajo la acción de un solo grupo de factores, sino que presentan un perfil más joven, desarrollado bajo las condiciones topográficas y climáticas existentes en la actualidad, el cual se encuentra superpuesto sobre un perfil más antiguo y formado bajo diférentes condiciones. Estos son los suelos complejos o poligenéticos.

Hay dos tipos de cambios que dan lugar a un suelo poligenático:

- a) cambios climáticos, con los cambios propios en la vegetación;
- b) cambios en el relieve, a los que se asocian cambios en las condiciones de drenaje.

Veamos algo de esto. Se reconoce que durante el Pleis tocemo ocurrieron importantes variaciones climáticas, al cambiar las condiciones de glaciales o interglaciales. Áreas extensas del planeta han experimentado así los efectos de climas fríos y húmedos, alternándose con periodos de climas más calientes y secos. Se conocen varios ejemplos de suelos poligenéticos originados por esta causa. Por ejemplo en la Unión Soviética se conocen casos de suelos originados en las actuales condiciones climáticas (suelos nagros de las estepas o chernozen) los cualés se han desarrollado a partir de un suelo original laterítico. Esto evidentemente indica que en el pasado geológico reciente en esas regiones existía un clima distinto al rectual, trepical e subcropical.

Los cambios en las condiciones topográficas pueden también presentar los cambios en las condiciones de drenaje (subterráneo y superficial) bajo los cuales el perfil del suelo se desarrolla, originando así los suelos poligenéticos.

Los suelos brindan entonces una valiosa información sobre la historia climática y geomorfológica de las regiones en que se desarrollan, por tanto al realizar el estudio geomorfológico de una región determinada se debe prestar también atención al análisis de los suelos.

Para concluir podemos decir que los procesos de meteorización tiene una vital importancia en el movimiento de la materia en la superficie del planeta, puesto que gracias a ella aumenta considerablemente la efectividad y capacidad de transporte de los demás agentes denudativos. El relieve influye también en las demás características de los suelos, tal y como vimos en el ejemplo de los lateritas cubanas.

Por último, siendo los suelos un producto de las condiciones climáticas y topográficas debe prestarse espeial atención en los estudios geomorfológicos a la existencia de los suelos poligenéticos, por los valiosos datos que puedan brindar sobre la historia geológica reciente de la zona y en que se encuentra.

Movimientos gravitacionales de suelos y rocas

Los movimientos gravitacionales tienen una gran importancia como agentes denudativos, pues los mismos muevon por las laderas de las elevaciones enormes volúmenos
do materiales y contribuyen al lento rebajamiento de ess
tas.

La fuerra de la gravedad actúa constantemente sobre los materiales sueltos producto de la meteorización. Estos materiales poseen una determinada cohesión que ordinariamente es suficiente para mantenerlos "in situ".

Ahora bien, dondequiera que el terreno posea una cierta pendiente existirá una componente de la fuerza por gravedad dirigida pendiente abajo. Por ello toda partícula tiene cierta tendencia a rodar o deslizarse según la pendiente y lo hará cuando la componente de la gravedad exceda a las fuerzas de fricción y cohesión que ligan la partícula al resto de la masa. El valor de la componente de la gravedad es proporcional al seno del ángulo de la pendiente.

Los movimientos gravitacionales abarcan desde pequeños granos microscópicos de suelo hasta grandes avalanchas que desplazan con enorme velocidad millones de metros cúbicos de rocas.

Existen por este motivo diversas variedades de movimientos gravitacionales determinados básicamente por la naturaleza del material que se desplaza (suelto o cohesiomado) y las condiciones climáticas. Pasaremos a estudiar algunos.

Arrastres de suelos: Consisten en un movimiento del suelo a través de largos períodos dado por el lento desplazamiento de los granos individuales que componen el suelo pendiente abajo. En este tipo de movimiento actuan diversos mecanismos que tienen en comun el hecho de que agitan el suelo y que por tanto disminuyen la fricción entre los granos permitiendo que estos sean desplazados hacia abajo. Entre estos se encuentran la expansión y contracción del suelo debido a su humedecimiento o desermiento o a los cambios de temperatura, erecimiento de las raices de las plantas, etc.

¡ El arrastre de suelos, a pesar de su lentitud, es probablemente el más notable agente gravitacional y uno de los más impostantes factores en la denudación debido a su presencia casi universal.

Flajos detrícicos (deslizamientos): Es an tipo de mo-

vimiento gravitacional que tiene lugar en las pendientes ricas en material arcilloso durante los períodos de lluvias intensas. Los suelos arcillosos, a diferencia de los arenosos poseen una gran cohesión interna. Al empaparse de agua los suelos arcillosos son capaces de fluir como líquidos viscosos. Mientras mayor sea la cantidad de agua en ellos menor será su resistencia al flujo. Por ello al saturarse el suelo de agua, si existe una pendiente adecuada, la componente de la gravedad puede ser superior a la resistencia al flujo del suelo, y este comenzar a deslizarse en forma de una lengua de material arcilloso que fluye ladera abajo hasta encontrar una pendiente que no permita el deslizamiento posterior de los materiales. En la zona donde se inicia el fiujo se produce una cicatriz en forma de anfiteatro. Los flujos detríticos a diferencia del arrastre de suelos poseen un plano basal al deslizamiento. La velocidad de traslación de los mismos es de metros o decenas de metros al año y el volumen de materiales puesto en movimiento puede llegar a muchos millones de m'.

Avalanchas, aludes y caidas de rocas: Comprenden los deslizacientos de masas de rocas que caen libremente. El volumen de estas puede variar desde pequeños bloques a grandes masas de millones de m³. Este tipo de movimiento se origina preferentemente en las grandes cadenas montañosas en las zonas de relieve más abrupto. En menor escada estos movimientos se originan al pie de los acantilados marinos o en las riberas escarpadas de los ríos.

Sobre este tema podemos concluir que debido a las extensiones afectalas por elles, los movimientes gravitacionales en occión con las aguas salvajes, som los más importantes agentes erosivos. Por cada metro quadrado arestado por la acción de los caos hay cantelaves de materes quadrados que la acción de los caos hay cantelaves de materes quadrados donde actuan estos dos procesos.

El factor principal para la producción de los movimientos gravitacionales es la presencia de agua en cantidades suficientes para lubricar los planos o superficies o para formar una masa fluente viscosa.

El relieve de las regiones húmedas es en gran medida fruto del trabajo combinado de los movimientos descendentes de suelos y la acción de las aguas salvajes. Estos abren los valles que después son ampliados por los movimientos gravitacionales y los detritos dejados por ellos al pie de las pendientes son transportados por las corrientes. La misma labor hace el mar al pie de los acantilados marinos.

Es decir, los movimientos descendentes de suelos y rocas son los grandes proveedores de materiales que trans portarán los otros agentes erosivos.

CAPÍTULO 5 PROCESOS FLUVIALES COMO MODELADORES DELA RELIEVE

En la superficie de la tierra las aguas superficiales constituyen uno de los agentes geomorfológicos más importantes, ya que la erosión y sedimentación fluvial junto a los movimientos descendentes de suelos y rocas, los procesos de meteorización y la acción erosiva de las aguas salvajes constituyen los grandes modeladores del relieve en el planeta.

En nuestro país, estos procesos fluviales adquieren mayor importancia, junto con la erosión marina, dado por la no existencia de glaciares y la limitación a la acción e osiva del viento a la formación de algunas dunas coste-

En este tema vamos a estudiar la actividad de los los y en general de las corrientes fluviales como agentes geomorfológicos.

(Las corrientes fluviales no son más que los canales a través de los cuales se encausa el drenaje de las zomas emergidas. De acuerdo a la dimensión de estos canales los mismos se denominan de diferentes formas como ríos, arroyos, riachuelos, torrentes, etc.

En dependencia de si estas corrientes corren todo el uño o solo durante un período de este se denominan permanentes o intermitentes. Estas últimas en ocasiones solo corren algunos días del año.

Los valles son formas negativas del relieve de dimensiones variables originadas fundamentalmente por la acción erosiva de las corrientes fluviales. Los mismos se extienden longitudinal desde la parte más alta del nacimiento hasta la desembocadura y transversalmente dentro de los límites que marcan las divisorias principales a ambas márgenes del río. De acuerdo a las formas y dimensiones, los valles reciben distintas denominaciones:

coñones, cañadas, quebradas, etc.

La forma que toma un valle depende de tres factores interrelacionados:

- 1) Profundización del valle.
- 2) Ampliación del valle.
- 3) Alargamiento del valle.

La profundización de un valle consiste en la excavación o profundidad del valle por la corriente fluvial. Este proceso lo lleva a cabo la corriente por diferentes mecanismos, como son:

- a) acción hidráulica: es la erosión de los materiale por la fuerza del agua de la corriente;
- b) corrosión o abrasión: es la erosión efectuada por las partículas que transporta el río, las cuales lanzadas contra el fondo y paredes del cauce, lo desgastan;
- c) corrosión: disclución de las rocas del caucé. Sólo es efectiva en el caso de las calizas, dolomitas, evaporitas, etc;
- d) meteorización: ocurre sólo en las corrientes intermitentes en los que el fondo seco es expuesto durante intervalos considerables. Los productos de la meteorización son removidos por la acción hidráulica y la abrasión.

Ampliación del valle: El ancho del valle se expresa en términos del ancho de su fondo. Este proceso puede llevarse a cabo por los siguientes mecanismos:

 a) erosión lateral: Los procesos de acción hidráulica y corrosión producen la remoción de la base del valle.

Esto a su vez induce al deslizamiento de los materiales por la corriente. Este proceso alcanza su máxima efectividad durante el estadio de madurez;

b) erosión de las aguas corrientes: Las aguas salva-

jes que corren a lo largo de las pendientes del valle arrastran consigo los materiales sueltos de los suelos y los transportan hacía el fondo del valle:

 c) meteorización y movimientos gravitacionales.
 Alargamiento de los valles: Este se lleva a cabo por los siguientes procesos:

- a) erosión remontante. La inmensa mayoría de las corrientes fluviales poseen un gradiente pronunciado
 en su nacimiento y por ello las aguas en estas zonas tienen una elevada energía cinética que provoca una erosión muy activa del fondo con el consiguiente alargamiento del valle;
- b) emersión de la zona de desembocadura, provocando la extensión de la corriente a regiones antes cubiertas por el mar;
- c) extensión mar adentro del delta;
- d) aumento de longitud de las curvas del río durante la formación de los meandros.

Corriente graduada y perfil de equilibrio

Existe un limite a la erosión en profundidad de los los, al cual se le conoce como nivel de base, este concepto fue introducido por Powell en 1875, entendiendo por tal un plano por debajo del cual no es posible para el lo realizar un trabajo erosivo. El concepto de nivel de base ha sido discutido por distintos geólogos y geomorfólogos. Según pensaba Powell este nivel de base es el bar, por debajo del cual las tierras no pueden ser erodation. Ciertamente este es una superficie límite que nunca re alcanzado pues toda corriente necesita una pendiente mínima para correr. Por esto el nivel de base de la erosión en los continentes debe, necesariamente ir ascen-

Intimamente relacionado con el concepto de nivel de base está el de corriente graduada. Este concepto fue introducido por Davis para referirse a aquellas corrientes fluviales que en las condiciones existentes de su caudal y características de su cauce corren por una pendiente o gradiente tal que es el suficiente para la transportación de la carga y en la que no se produce una erosión apreciable de su cauce en profundidad.

La erosión activa en profundidad de un río viene dada por la presencia de saltos de agua y rápidos en los que el río erosiona activamente su lecho hacia abajo. Casos extremos de corrientes no graduadas son aquellas de las corrientes que descienden desde la masa del Loreto hacia el río Baconao, las cuales hacen todo su recorrido a través de una serie de saltos. Los afluentes de la vertiente Sur del Valle del Baconao en el área de Las Yaguas-Fraternidad, aunque muy lejos de estar graduados, no presentan las condiciones extremas de los anteriores. El río Baconao, por otra parte es en osta área una corriente cercana al estado de graduada, si bien la presencia de algunos saltos y rápidos, indica que tal estado no ha sido aún alcanzado.

Una misma corriente puede presentar tramos graduados y tramos que no lo están, es decir, que el estadío de corriente graduada no es avanzado simultáneamente por la corriente a lo largo de todo su curso sino que se llega a él por tramos. Así por ejemplo en aquellas porciones que el río corra sobre rocas blandas, fácilmente erosionables y en las que por ello pueda profundizar rápidamente su cauce, se deberá alcanzar el perfil de equilibrio antes que en las porciones del curso constituido por rocas duras.

Cuando una corriente ha alcanzado el estadio de graduada a través de todo su recorrido, el perfin descrito

por el fondo de la misma desde su nacimiento hasta la desembocadura es conocido como perfil de equilibrio.

En cursos pracedentes se simplifica la definición de perfil de equilibrio como una curva hiperbólica suave, cóncava hacia arriba. Esto en líneas generales es cierto, pero en detalles en ocasiones no es así. Realmente no siempre se produce una disminución progresiva del gradiente aguas abajo en un río graduado. Si por ejemplo esta recibe un afluente que traspone a una gran cantidad de materiales más gruesos que los que el carga, existirá un aumento del gradiente aguas abajo de la confluencia, puesto que se requerirá un aumento en la pendiente para poder transportar la nueva carga aguas abajo.

Al alcanzar una corriente su perfil de equilibrio, esto no significa que la misma haya logrado la mínima pendiente o gradiente definitivo bajo el cual correrá. En realidad el gradiente puede ser modificado lentamente al ir cambiando las condiciones durante el ciclo geomorfológico.

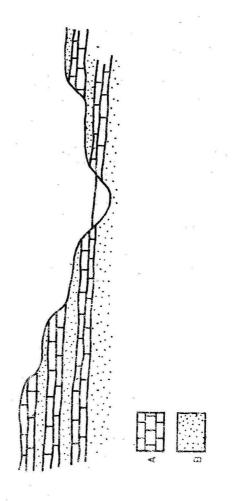
Una corriente graduada en un sistema en equilibrio que depende del caudal, cantidad de carga y características del cauce; un cambi) en cualquiera de estos factores causará un desplazamiento del equilibrio en una dirección tal que tienda a restaurarlo. La disminución en el tamaño y volumen de la carga motiva por la reducción progresiva del relieve al avanzar el ciclo de erosión, permite un gradiente cada vez menor de las corrientes. Pero este es un proceso que transcurre muy lentamente.

Los ríos se unen formando sistemas de drenaje constituidos por una corriente principal y una red de afluentes o tributarios que desembocan en ella, por lo que es evidente que el perfil de equilibrio de la corriente graduada que drena una región será entonces el nivel de base de la erosión para toda esa cuenca. En ningún punto de la misma la erosión fluvial puede profundizar más abajo del lecho de la corriente principal, puesto que ninguno de sus afluentes puede hacerlo. Proyectando el perfil de equilibrio del río en toda el área de su cuenca, pasando por las áreas interfluviales (área situada entre dos corrientes) se obtiene una medida del límite de la erosión en cada localidad particular.

Perfiles transversales de los valles

El porfil transversal de los valles es función de diversos factores como son:

- 1) Estadio del ciclo de erosión fluvial.
- 2) Factor litológico-estructural.


Estadio del ciclo de erosión fluvial: Los valles jóvenes tienen forma de V, debido a la interacción de los procesos de profundización por parte de la corriente, los ensanchamientos gravitacionales y las aguas salvajes. El perfil de V puede ser sustituido por uno de paredes verticales (cañón) cuando el río atraviesa capas densas con yacencia vertical o rocas que sean sumamente resistentes a los procesos de erosión y meteorización.

Cuendo la corriente alcanza su perfil de equilibrio (madurez) la erosión en profundidad se hace casi imperceptible y la acción erosiva principal se traslada a las paredes del cauce. De esta forma el río va ensanchando el fondo del valle y creando una llanura de inundación.

El proceso de ensanchamiento continúa en la vejez, cuando el ancho del valle fluvial es de varias veces el de la faja de meandros.

ractor intológico-estructural: La forma del perfil temperersal del valle fluvial está que gran medida dependiente de la litología por dondo atraviesa el río, ya que en depeniencia de la competencia de la roca a los procesos de conudación, será la efectividad y rapidez de la ercsion fluvial.

Un ejemplo de esto lo podemos ver en las terrazas presentes en los valles excavados en zonas donde existe alternancia de rocas duras y blandas con yacencia horizontal (fig. 5.1).

6. 5.1 Valle Jabrado sobre una secuencia de rocas de diferentes resistencia a la demidución. A) Rocas duras, B) Rocas

Otro ejemplo tenemos en los cursos fluviales que han labrado su cauce en zonas de rocas blandas intruidas por diques de rocas ígneas, lo que favorece la asimetría del valle dado por la intensa erosión en la margen desarrollada sobre la roca blanda (fig. 5.2).

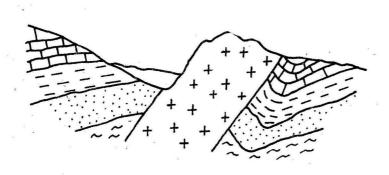


Fig. 5.2 Valle de un río labrado sobre un dique de rocas igneas en contacto con rocas blandas.

De igual forma la presencia de fallas puede causar marcadas asimetrías en el perfil transversal del valle cuando la corriente va a lo largo o muy cerca de una fall que pone en contacto rocas de variadas litologías y resis tencia a la erosión (fig. 5.3).

Cuando los valles son paralelos al rumbo de capas monoclinales, las corrientes que los excavan tienen una mar cada tendencia a profundizar siguiendo el rumbo de las ca pas, particularmente a lo largo del techo de una capa resistente. Esto crea generalmente un valle con un perfil asimétrico en el cual una de las laderas está determinada por el ángulo de yacencia de las capas y la otra por la resistencia de estas a los procesos denudativos (fig. 5.4).

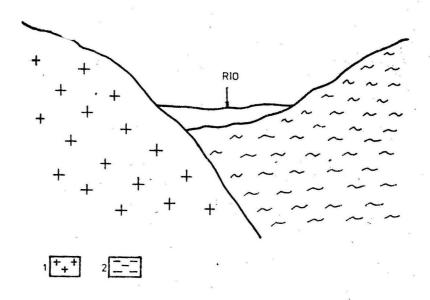


Fig. 5.3 Valle de un río labrado en una zona de contacto tectónico entre rocas de diferentes resistencias a la denudación. Λ) Rocas resistentes, B) Rocas poco resistentes.

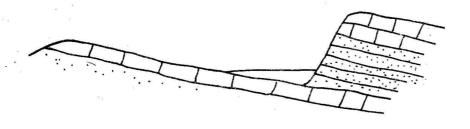


Fig. 5.4 Valle de un rio labrado sobre una secuencia monoclinal.

Clasificación de los valles fluviales

En los inicios de la geomorfología como ciencia a fi nes del siglo pasado y principios del actual Davis, Powell y otros geomorfólogos desarrollaron una clasificación de los valles fluviales atendiendo a la génesis de la corriente y a sus relaciones con la estructura geológica. A continuación estudiaremos los principlos miembro de esa clasificación.

- 1) Corriente consecuentes : Se desarrollan en una pendiente topográfica original ejemplo, corrientes que drenan al mar una llanura costera recien emergida, llanuras de lavas, etc. (fig. 5.5).
- 2) Subsecuentes: Las que han labrado su curso a lo large de una zona de debilidad estructural, ejemplo a lo largo de capas fácilmente erosionables o zonas de fa lla, ejemplo Baconao, Las Yaguas, (fig. 5.5).
- Resecuentes: Drenan a la misma dirección del drenaje consecuente pero se encuentran en niveles topográficos inferiores y se han desarrollado con respecto a mievos niveles de base de erosión (fig. 5.5).

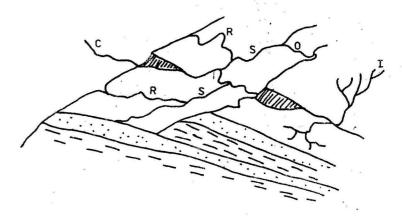
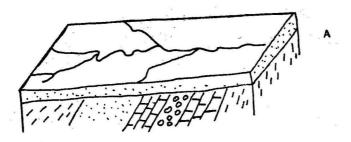



Fig. 5.5 Corriente fluviales. C) Consecuentes,
R) Resecuentes, S) Subsecuentes, 0) Obsecuentes, I) Insecuentes.

- 4) Obsecuentes: Drenan en dirección opuesta à los valles consecuentes originales (fig. 5.5).
- 5) Insecuentes: Tienen un curso no controlado por ningún factor estructural o litológico, ejemplo drenaje de áreas de rocas homogéneas (fig. 5.5).
- 6) Superpuestas: Se originan en una superficie con determinada estructura y al erosionar en profundidad y encontrar una estructura diferente, mantienen su cauce sobre las nuevas condiciones (fig. 5.6).
- 7) Antecedentes: Es aquella que habiendo establecido un curso, lo mantiene a pesar de la oposición de un nuevo elemento estructural en desarrollo. Esto es posible si la corriente es potente y la deformación muy lenta. Para que el río pueda mantener su curso a través de todo su desarrollo. (fig. 5.7).

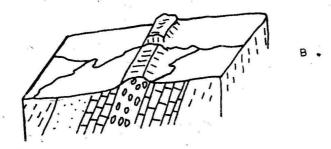


Fig. 5.6 Corrientes fluviales superpuestas.

Fig. 5.7 Corriente fluvial antecedente.

(Redes de drenaje: El ordenamiento de las corrientes fluviales que drenan a una región es a lo que se le llama red de drenaje. La forma que adopta la red depende en gran medida de los factores litológicos (resistencia de las rocas a la denudación) y estructurales, así como de los movimientos tectónicos recientes que han ocurrido en una región determinada. Puesto que la red de drenaje refleja de una forma u otra estos factores, su estudio es de gran importancia para los geólogos.

Existe una gran variedad de redes de drenaje en dependencia de las condiciones geológicas. Aquí sólo estudiaremos las más frecuentes de encontrar, (fig. 5.8).

Drenaje detrítico: Esta es la variedad más frecuente. La red fluvial adopta en este caso, un esquema similar al de las nerviaciones de las hojas de los árboles, ramificándose los afluentes en variadas direcciones, aunque generalmente, se unen a la corriente principal bajo un ángulo bastante agudo en la dirección del flujo de esta (fig. 5.8 a).

Hay numerosas condiciones que favorecen la formación de este drenaje, pero el factor común de todas ellas es la homogeneidad.

Este drenaje es característico de cualquier tipo de rocas, en condiciones estructurales muy variadas, desde capas horizontales a pliegues muy apretados. Es característico de las llanuras aluviales de los ríos, donde, en los depósitos de grava, arena o arcilla, no se presentan líneas de debilidad estructural (fallas, zonas de agrietamiento), ni buzamientos marcados en las capas blandas, a lo largo de las cuales la erosión sea más fácil, o capas duras inclinadas que forman crestas. Debido a que en esas condiciones no existen zonas en las que la erosión se lleve a cabo con particular intensidad, la erosión remontante en las cabeceras es un proceso casual aleatorio

Fig. 5.8 Redes de drenaje. A) Dendritica,

Radial, Enrejada, C) Paralela 0 y no tiene una dirección predominante.

Un caso similar se presenta cuando las rocas igneas plutónicas, presentan en los stocks, batolitos, etc; no poseen ninguna zona de debilidad tectónica particularmente notable, o en el caso de secuencias sedimentarias o metamórficas complejamente plegadas, cuando estas no presentan formaciones que se diferencian por su resistencia a la denudación o no presentan zonas de falla cuya resistencia a la erosión sea marcadamente mayor a menor, que la de las rocas adyacentes.

(Resumiendo el drenaje dentrítico se origina en todas aquellas regiones en las que las rocas expuestas no presentan notables diferencias a la denudación es decir, que tienen una resistencia más o menos uniforme u homogénea a los procesos denudativos.)

Drenaje enrejado: En este caso el drenaje presenta una serie de corrientes principales subparalelas que corren siguiendo el rumbo de las capas, en tanto que los afluentes que se unen a ellas lo hacen bajo ángulos rectos o casi rectos. Las corrientes principales, a menudo, presentan en su curso codos rectos al cortar o pasar a través de las crestas (fig. 5.8 b).

El drenaje enrejado ès característico de estructuras monoclinales o plegadas que poseen capas con marcadas diferencias en la resistencia a la denudación.

Drenaje radial: Este tipo de drenaje se presenta cuando las corrientes nacen en una región elevada de contorno circular y de ella irradian en todas direcciones hacia las zonas más bajas adyacentes. Es por tanto típico de los conos volcánicos, montañas o cordilleras de formas dómicas, etc. Tal tipo de drenaje caracteriza, en su conjunto a la Sierra Cristal (fig. 5.8 c).

Drenaje centripèto: Es el inverso del caso anterior, puesto que las corrientes convergen hacia una depresión

central. En Cuba es frecuente en las zonas cársicas. Es también frecuente en regiones desérticas con drenaje interior (fig. 5.8 d).

(Drenaje paralelo: Se manifiesta cuando se presentan pendientes unidireccionales prolongadas, como las que existen por ejemplo, a lo largo de una llanura costera extensa que desciende suavemente en dirección a la costa, o bien, cuando la superficie del terreno sigue a una capa resistente suavemente inclinada. En estos casos los cauces fluviales principales se disponen paralelamente orientados según la línea máxima pendiente de la superficie)

Textura del drenaje: Bajo este término se entiende la (fig. 5.8 e). densidad o espaciamiento relativo de las líneas del drenaje. Por su textura el drenaje tiende a clasificarse en tres grupos; fino, medio y grueso, aunque no existe una delimitación precisa entre ellos y, por esto, su clasificación tiene muchos elementos subjetivos. El drenaje fino se caracteriza porque los cursos fluviales están próximos entre si. Es típico por ejemplo, de los terrenos de rocas arcillosas. El drenaje grueso se caracteriza porque las corrientes están muy espaciadas entre sí.

La textura del drenaje es controlada por varios factores. Quizás el más importante de ellos es la permeabilidad del substrato rocoso. Es un hecho reconocido que las lineas de drenaje son más abundantes sobre materiales impermeables que sobre los permeables. Así, las áreas cubiertas por materiales muy permeables como gravas, arenas etc. tienen muy poco escurrimiento y por ello casi carecen de red de drenaje. En cambio, las áreas de terrenos arcillosos, impermeables, presentan un drenaje muy fino debido a que la mayor parte de las precipitaciones se es curren superficialmente.

También influye en la textura del drenaje la masivi-

dad y abundancia de grietas de las rocas. Mientras más fina sea la estratificación y mayor sea el número de grietas, más fino será el drenaje, manteniéndose iguales los demás factores.

En la textura del drenaje también hacen notar su influencia otros factores como el relieve y la cobertura vegetal. Una superficie llana presentará una red más gruesa de drenaje que otra superficie inclinada compuesta por los mismos materiales, manteniéndose iguales condiciones geológicas y climáticas. Mientras más espesa sea la cobertura vegetal de su terreno, más espaciada tenderá a ser su red de drenaje. Esto puede comprobarse en aquellas laderas de las elevaciones que son taladas. En estas condiciones, la erosión se activa mucho y pronto comienzan a surgir cárcavas o zanjas a lo largo de la ladera, formándose más tarde pequeñas cañadas o ampliándose rápidamente las ya existentes.

Puesto que la cobertura vegetal depende esencialmente del clima, las regiones áridas tenderán a tener un drenaje más fino que las húmedas, no obstante que el total de precipitaciones sobre las primeras es mucho menor que en las segundas.

Erosión lateral de las corrientes fluviales

Aun desde su origen en el cauce fluvial aparecen sinuosidades que se originan por diversas circunstancias como:

- 1) Existencia de irregularidades en el terreno.
- Diferencias litológicas-estructurales de la zona atravesada por el río.
- Características hidrodinámicas de la corriente fluvial.

De acuerdo a Veliakanov en toda corriente fluvial aún de configuración rectilínea la distribución de las velocidades tiene carácter helicoidal y esto crea condiciones favorables para que la erosión lateral destruya las orillas derecha e izquierda y desarrollen los meandros.

El agua de la corriente fluvial tiende a avanzar por inercia en línea recta y, por ello, al describir el cauce un arco, el agua es impulsada hacia la orilla cóncava. En esta zona el cauce se ahonda y la orilla es erosionada, se hace escarpada y retrocede, aumentando la curvatura. Simultáneamente en la orilla opuesta ocurre la acumulación de materiales debido a que en ella la velocidad de la corriente es considerablemente menor, formándose un depósito de gravas o arenas conocido como espiga (fig. 5.9).

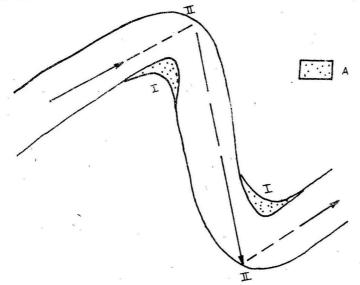


Fig. 5.9 Meandros. I) Orillas de acumulación, II) Orillas de erosión, A) Depósito aluvial en espiga.

La orilla de erosión al retroceder provoca la migración del cauce y la espiga. Como resultado final puede llegarse al estrangulamiento del meandro formándose un lago de herradura y rectificándose el cauce (fig. 5.10).

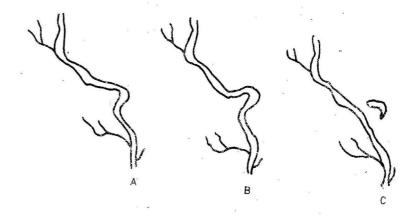


Fig. 5.10 Migración del cauce durante el desal rrollo de los meandros. A) Orillas de acumulación, B) Fase de desarrollo interno, C) Estrangulamiento del meandro.

Este proceso de formación de meandres con el consecuente ensanchamiento del fondo del valle logra su mayor desarrollo cuando la corriente alcanza su perfil de equilibrio haciéndose casi imperceptible la eresión en profundidad. Al ir retrocediendo progress amente las laderas del valle y este hacerse más amplio, los reandros se ponen cada vez más raramente en contacto con las pendes del valle, lo obstante lo cual ellas continuan siendo remajadas per la meteorización, mevimientos gravitacionales y celvales, así como por los afluentes de corrientes. La aparición de los meandros en gran número tiene lugar en los ríos con cargas moderadas. En aquellos que se encuentran sobrecargados ocurre la sedimentación del exceso de carga física en el propio cauce que de esta forma se ramifica y tiende a ser más rectilíneo.

Ciclo de erosión fluvial. Terrazas fluviales

Una de las ideas fundamentales que Davis aportó a la geomorfología es que todo relieve es producto de un proceso de desarrollo y que toda región sometida a la acción de los procesos denúdativos pasa por una serie de etapas de desarrollo que se suceden en un determinado orden. La suma de estas etapas constituyen un ciclo denudativo. Existen ciclos denudativos para las regiones húmedas, glaciares, desérticas, etc. En nuestro caso el interés se centra en los procesos morfogénicos de las regiones húmedas y por ello sólo trataremos del ciclo de erosión fluvial.

Cada estadío de dicho ciclo tiene sus características propias.

- Juventud:
- Pocos ríos son consecuentes. Predominan numerosos barrancos y arroyuelos.
- 2) Los valles toman forma de V y son profundizados de acuerdo a la altura de la región sobre el nivel del mar.
- 3) No se desarrollan las llanuras aluviales, excepto en las confluencias y ríos principales. Las laderas de los valles se elevan desde las riberas del río.
 - 4) Las zonas interfluviales presentan un drenaje pobre donde se pueden desarrollar lagos y pantanos.
 - 5) Existen o pueden existir cataratas.
 - Las divisorias de las corrientes sen amplias y poco definidas (cimas llanas).

- Madurez:
- 1) La corriente tiene un perfil de equilibrio.
- 2) Una parte del valle está ocupada por llanos de inundación.
- 3) Se desarrollan meandros.
- 4) El ancho del fondo de los valles no excede mucho al ancho de la faja de meandros.
- Los lagos y cascadas son eliminados.
- Se rebajan las divisorias, aumentan los afluentes, disminuyendo el área de interfluvios.
 Vejez:
- 1) Los valles son amplios y de pendientes suaves.
- 2) Se desarrollan ampliamente las llanuras de inundación.
- 3) El ancho del valle es varias veces mayor que el cintu-
- 4) Se reduce el número de afluentes en relación con los de la madurez aunque son más que en la juventud.
- 5) Los interfluvios reducen su altura y las divisorias son muy bajas.
- 5) En las llanuras se desarrollan pantanos y lagos.
- 7) Extensas áreas se encuentran a la misma altura que el nivel de base de erosióm.

En la formación original dada por Davis las etapas del ciclo fluvial se suceden una a otra. En ellas había una delimitación en el tiempo entre los movimientos tectónicos y la acción denudativa.

Él planteó que los movimientos de ascenso sólo manifestaban al inicio del ciclo, elevando un bloque de la
corteza sobre el cual actuaban posteriormente los procesos denudativos que lo reducian lentamente de altura. El
supuso que posterior al ascenso inicial la zona permanecía estable.

En la realidad la situación es más compleja, ya que los movimientos tectónicos actuan con diverso sentido e

intensidad, de modo simultáneo a la ocurrencia de los procesos denudativos.

Al ocurrir un cambio en la intensidad o dirección de los movimientos oscilatorios se modifica el relieve por ejemplo, si el movimiento es ascendente e intenso el relieve se rejuvenece ya que las corrientes que las drenan aumentan su gradiente y su poder erosivo. Si la corriente ha desarrollado una llanura de inundación de cierta extensión se originan por este proceso las terrazas fluviales que son formas del relieve fluvial elaboradas por el río al modificarse su posición relativa con el nivel de base de erosión. Estas se componen por un escape frontal, una superficie llana o ligeramente inclinada y un escape trasero.

La formación de las terrazas implica un movimiento tectónico intermitente en el cual un río que ha alcanzado el perfil de equilibrio, se produce una erosión vertical que deja colgado el antiguo llano de inundación.

Los movimientos tectónicos no son los únicos causantes de la formación de terrazas fluviales. Los movimientos de ascenso y descenso del nivel del mar, también provocan el desarrollo de las terrazas. Igualmente un cambio climático a favor de un aumento de las precipitaciones puede provocar la formación de las terrazas al aumentar el cauda, y por tante el poder erosivo de los ríos.

Es decir la formación de las terrazas se relacionan con:

- 1) Cambios climáticos.
- 2) Cambios eusáticos (variar del nivel del mar).
- 3) Movimientos tectónicos.

Existen diferencias entre las terrazas debido a su génesis ya que los de origen tectónico tienen un carácter local, en cambio las p ovocadas por variaciones climátious y del nivel del mar afectan a toda la cuenca. Las terrazas según su estructura geológica pueden

- De roca madre: La superficie es de roca madre aunque hay parches de aluviones. Poco espesor de aluviones.
- Terraza basal: En la parte inferior de la terraza aflora la roca madre pero el resto está constituido por aluviones.
- Terraza acumulativa: Tanto en la superficie como en el escarpe se observan aluviones, (fig. 5.11 a, b, c).

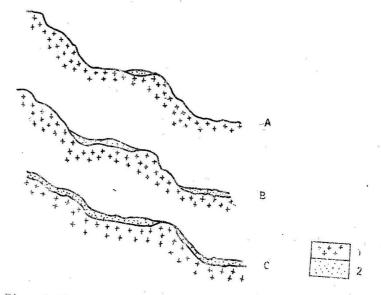


Fig. 5.11 Terrazas fluviales. A) De roca madre,
B) Bazal, C) Acumulativa, 1) Rocu madre.

Agradación fluvial

Hasta dora hemos analizado los procesos gradativos de superficie los cuales con los más comunes. Sin empargo los paisajes agradativos aportan también un gran

volumen de información sobre la evaluación de la superficie terrestre y del relieve, más cuando los sedimentos son conservados.

Las causas de la agradación fluvial se pueden agrupar en dos grandes grupos:

- 1) Pérdida de la competencia del curso fluvial, o sea de su energía. Esto puede ser provocado por varios factores.
 - Disminuye su velocidad Disminución del gradiente
 Aumento amplitud del valle
 Obstrucciones
 - Disminución del flujo Lagunas o lagos locales en el curso fluvial Cambios climáticos

Disminución de volumen

2) Exceso de carga.

Esto está dado también por varios factores como son:

- Lavado glaciar
- Incremento de la erosión, por causas climáticas, tectónicas o bioticas.
- Aumento de la carga de los tributarios

Las formas del relieve originadas por la agradación fluvial son en primer lugar las llanuras aluviales o de inundación, existiendo además otras formas como las barras de canal, barras meandrillosas y barras deltaicas, los malecones y los abanicos aluviales.

Del análisis de las formas agradativas y degradativas se pueden obtener informaciones geológicas valiosas: ingeniero - geológicas, tectónicas, hidrogeológicas, etc. Pero además del conjunto de formas agradativas - degradativas caracterizan las distintas etapas de la erosión fluvial y el desarrollo particular de cualquier zona.

"Antes de concluir el tema debemos recordar que:

- 1) El paisaje fluvial es dinámico y se desarrolla de ma-
- 2) El modelado del relieve se debe a los procesos agrada-
- 3) La forma y extensión de los valles se debe a factores:
 - Estructurales y biogeográficos

CAPÍTULO 6 RELIEVE DESARROLLADO EN REGIONES DE ROCAS PLEGADAS

Sobre extensas regiones de los continentes e islas el relieve ha sido excavado sobre secuencias de rocas plegadas con mayor o menor intensidad, es por esto que resulta de gran interés estudiar las peculiaridades topográficas de las regiones de rocas plegadas.

En este capítulo analizaremos el relieve desarrollado sobre pliegues aislados ya sean domos o braquipliegues, el relieve desarrollado sobre estructuras monoclinales, el relieve de las zonas plegadas, es decir, aquellas en que los anticlinales y sinclinales alinean paralelamente a lo largo de grandes distancias. Todas estas estructuras, en especial la última, son frecuentes en Cuba.

Influencia de la yacencia monoclinal de las capas en la topografía

En la superficie de los continentes yacen, rocas sedimentarias con yacencia variable desde horizontales hasta verticales. En este epigrafe estudiaremos la influencia que sobre el relieve tienen las capas con yacencia monoclinal.

Las capas de rocas resistentes a la desintegración mecánica y la descomposición química realizada por los procesos meteóricos y resistentes a la erosión son rebajadas más lentamente que las rocas menos resistentes. Esto ocasiona que al desarrollarse el proceso denudativo existan diferencias en el relieve, las que corresponden en parte a las diferencias litológicas.

- En las regiones donde se alteran capas de estratificación gruesa con diversa resistencia a la denudación que yacer con ángulo pequeño, se desarrolla el relieve de cuesta. Esta forma de relieve se caracteriza por la presencia de elevaciones alargadas que poseen una ladera de pendiente suave y otra de pendiente más abrupta.

La cuesta sigue el rumbo del monoclinal o sea, el de pendiente suave sigue el techo de la capa dura, mientras que la ladera abrupta corta las capas formando un escarpe de cuesta. El drenaje en estas condiciones suele ser enrejado.

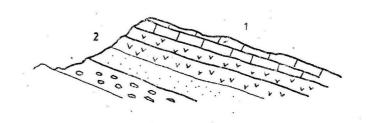


Fig. 6.1 Cuesta que sigue el buzamiento de una estructura monoclinal. 1) Cuesta,
2) Escarpe de cuesta.

Las cuestas se desarrollan aún en capas con buzamiento pequeño, pero cuando este se hace cero o
sea capas horizontales o muy próximas a la horizontalidad se forman las masas, que son elevaciones
de cimas planas y pa edes escarpadas. La cima plana es la yacencia horizontal de una capa resistente.

Al aumentar la yacencia de las capas noncelinales las pendientes de ambas laderas se van aproximando en el valor de la inclinación hasta originar elevaciones de pendientes abruptas y cimas escarpadas conocidas como cresalas. Esta courre cuando la yacencia de las capas es de

unos 45° o más.

Un buen ejemplo de la transición de crestas a cuestas y de estas a mesas se da en el área comprendida entre Ramón de las Yaguas y Fraternidad en la cordillera de la Gran Piedra (fig. 6.2).

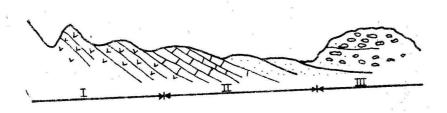


Fig. 6.2 Esquema morfológico del sinclinal del Loreto. I) Cresta, II) Cuesta, III) Mesas.

Otro excelente ejemplo de desarrollo de elevaciones de tipo cuesta y cresta es la región ubicada al N y W de Santiago de Cuba, en las Sierras de Pelado y Boniato. En otras regiones de Cuba este tipo de relieve está muy desarrollado.

Otras formas de relieve desarrollado sobre estructuras monoclinales son los Hog back, cuando se alternan capes duras y blandas con buzamientos entre 30-70° y las barras, cuando en iguales condiciones el ángulo de yacencia es mayor de 70°

Relieve sobre domos y pliegues braquiformes

Los domos son estructuras de conterno más o menos circulares (en planta) y en la que las capas buzan en todas direcciones desde el centro. El buzamiento disminuye hacia la periferia. Pueden originarse por diferentes causas: ascenso de grandes masas evaporíticas o arcillosas (plásticas y poco densas), que se mueven verticalmente empujando y arqueando las capas que la sobreyacen. Un braquianticlinal se diferencia de un domo por su contorno elíptico.

Los locolitos forman también domos y braquicanticlinales. Existen además domos y braquianticlinales de tensión mucho mayor originados por movimientos de ascenso de la corteza terrestre.

La expresión topográfica de una estructura, en domo depende fundamentalmente del tiempo en que la misma ha sufrido los procesos denudativos. Un domo reciente puede presentar una forma topográfica similar a la estructural y marcarse como un levantamiento en forma de bóveda del terreno. En el mapa se refleja en las curvas de nivel y en la ocurrencia de un drenaje radial (fig. 6.3). Estos casos son poco frecuentes. La mavoría de los domos han sido denudados. Si el domo está constituido por capas alternas de diferente dureza se formarán valles y elevaciones concéntricas con una combinación de drenaje radial y enrejado. La erosión puede llegar a exponer las rocas del núcleo. Si este se compone de rocas blandas la parte central se concentrará en una depresión topográfica, produciéndose una inversión del relieve (fig. 6.4 a). Si las rocas del núcleo son resistentes se formarán colinas montañosas u otras formas positivas (fig. 6.4 b).

En caso de los braquianticlinales la situación es similar haciendo la adaptación morfológica y estructural.

Relieve desarrollado sobre pliegues limales

La expresión topográfica de un pliegue depende de la posición de la superficie de erosión que corta al pliegue.

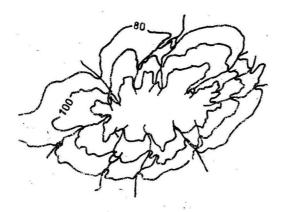
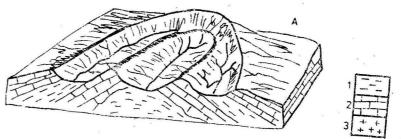


Fig. 6.3 Expresión topográfica de un domo reciente.


Hay 6 expresiones topográficas de la estructura geológica de plegamiento que encontramos frecuentemente:

- 1) Valle anticlinal. Se desarrolla siguiendo el eje de un enticlinal de núcleo constituido por rocas blandas.
- 2) Valle sinclinal. Se desarrolla siguiendo el eje de un sinclinal.
- 3) Cordillera anticlinal. Cordillera que sigue el eje anticlinal.
- 4) Cordillera sinclinal. Cordillera que sigue el eje sinclinal con núcleos de capas resistantes.
- 5) Valles monoclinales. Valles excavados en rocas blandas que forman parte de un monoclinal.
- 6) Cadenas y cuestas.

Veremos algunos casos:

- Si en un ciclo de erosión se desarrolla un peniplano sobre un anticlinal en una posición To que halla rocas blandas y en superficie, pero existe una capa resistente cerca de esta, el levantamiento del peniplano implicará la intensa denudación de las

capas blandas y la capa resistente originará una cordillera anticlinal sobre la roca dura. (fig. 6.5

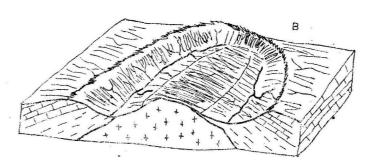
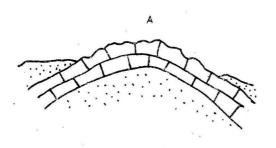



Fig. 6.4 Relieve sobre domos constituidos por rocas de diferentes resistencia a la denudación. 4) Múcleo constituido por rocas blandas, B) Múcleo comatia tuido por rocas duras, 1 y 2) Rocas resistentes a la demudación, 3) Rocus poce resistentes.

Si dur re un ciclo erocivo se ha formato un paniplano y las lapas duras han eigo truncadas quedande en el cantro i i rocas blandas, al écurrir un levantemiento re formant of valle anticlinal (fig. 6.3 b).

- Con les sinclimates ocueren iquales proceses.

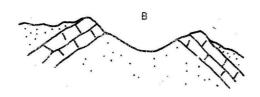
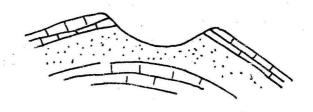



Fig. 6.5 Relieve desarrollado sobre pliegues anticlinales. A) Elevación anticlinal, nal, E) Depresión anticlinal.

Criterios para determina, la relación relieve-estruc-

Existen criterios que nos permiten determinar la relación existente entre el relieve y las formas estructurales y se pueden aplicar en el estudio de mapes, fotos aéreas así como en los reconocimientos de campo.

- 4 continuación veremos algunos de ellos:
- Las cuestas con escarpes opuestos convergentes indican la presencia de anticlinales, (fig. 6.6).

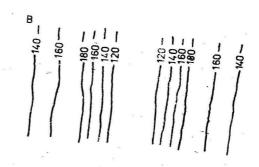


Fig. 6.6 Valle anticlinal. A) Corte geológico, B) Expresión to-pográfica.

- Las cuestas cuyos flancos suaves son opuestos y convergentes en su buzamiento marcan sinclinales, (fig. 6.7).

120 - 160 -

Fig. 6.7 Valle sinclinal. A) Corte teológico, B) Expresión topográfica.

- Las cuestas originadas por la crosión de un anticlinal que se hunde convergen en dirección al hundimiento (fig. 6.8).

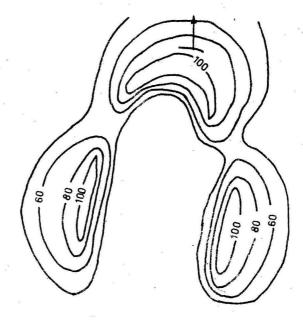


Fig. 6.8 Expresión topográfica de un anticlinal que se hunde.

- Las cuestas originadas por la erosión de un sinclinal hundido convergen en dirección opuesta al hundimiento del sinclinal, (fig. 6.9).
- Las cuestas y valles alternos se desarrollan cuando hay una serie de capas alternas de desigual dureza en los flancos de anticlinales y sinclinales.
- Las montañas anticlinales se caracterizan por cimas redondeadas y laderas suaves que siguen el buza-miento de las capas.
- Las montañas sinclinales varian desde crestas largas y estrechas hasta amplias mesetas con flancos escarpados.

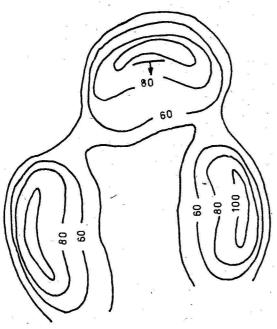


Fig. 6.9 Expresión topográfica de un sinclinal que se hunde.

- Si una falla corta la nariz de un pliegue transversalmente y hay capas de diferentes resistencias a la denudación del relieve puede presentar las siguientes situaciones.
- a) el bloque de la nariz asciende (en un anticlinal).

 La nariz es amplia y las crestas se alejan de la

 falla (fig. 6.10 a).
- b) la nariz de una sinclinal que se eleva, se acorta y se estrecha y las crestas se desplazamentacia el eje del sinclinal, (fig. 6.11 a).

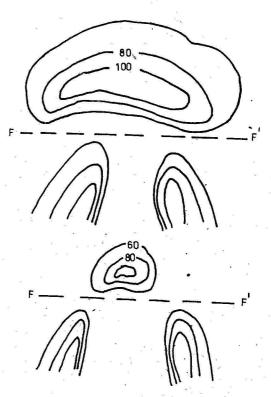


Fig. 6.10 Pliegue anticlinal cortado transversalmente por una falla. A) Bloque de la nariz asciende, B) Bloque de la nariz desciende, FF')Linea de falla.

- c) el descenso de la nariz de un sinclinal resultará en su ampliación y extensión y las crestas se alejarán del eje (fig. 6.11 b);
- d) el descenso de la nariz de un anticlinal resultará en su acortamiento y estrechamiento y las crestas se moverán hacia el eje de la estructura, (fig. 6.10 b).

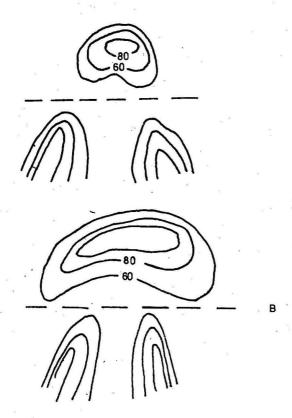


Fig. 6.11 Pliegue sinclinal cortado transversalmente por una falla. A) Bloque de la nariz asciende, B) Bloque de la nariz desciende FF') Linea de falla.

Para analizar estos casos hay que tener en cuenta que en profundidad el pliegue es más amplio o más estrecho en dependencia de si la estructura es anticlinal o sinclinal y por lo que las secuencias plegadas al ser elevadas o hundidas producen un efecto de acercamiento o

ampliación de la nariz.

Para concluir diremos que el tipo de red de drenaje, el tipo de relieve y la distribución de las litologías en superficie dan datos muy valiosos sobre la estructura geológica, ya que esta condiciona en gran medida a las primeras.

Conclusiones

- 1) Siempre que exista una estructura plegada con capas de diferente resistencia a la denudación se reflejará en las formas del relievo, si la denudación de la región no está muy avanzada y convertida en un peniplano.
- Dependiendo de la yacencia de las capas, sobre las estructuras más resistentes se originarán crestas, cuestas, mesas, etc.
- 3) La expresión morfológica de un pliegue depende mayormente de la posición de la superficie de erosión que lo corta con respecto a las capas resistentes comprendidas en él. Por esto, los anticlinales y sinclinales pueden manifestarse tanto por depresiones (formas negativas del relieve) como por elevaciones (formas positivas del relieve).

CAPÍTULO 7 RELIEVE EN ESTRUCTURAS FALLADAS

Las fallas son uno de los tipos de estructuras más frecuentes y, a menudo ya sean antiguas o muertas, o recientes o vivas, encuentran expresión en el relieve. Las fallas presentan expresión topográfica debido a que suben o bajan o bien desplazan horizontalmente a bloques continentales. Las fallas pueden crear también zonas trituradas o brechosas que son fácilmente erosionables y que se reflejan topográficamente como áreas deprimidas. Estas zonas pueden destacarse como elevaciones en el caso que están mineralizadas con cuarzo u otro mineral resistente a la meteorización.

Escarpes. Sus tipos

Las formas fundamentales del relieve producidas por las fallas son los escarpes de falla, originados por movimientos de la corteza terrestre.

Pueden distinguirse dos tipos de escarpes relacionados con las fallas.

- Escarpe de falla de origen directamente tectónico
- Escarpe de linea de falla producido por activación o exhumación de una falla y erosión diferencial de los bloques de falla.

Los escarpes en general de acuerdo al grado de denudación pueden ser jóvenes, maduros y viejos. Un escarpe joven se reconoce fácilmente por su posición coincidente con el plano de falla.

Un escarpe viejo será el muy erosionado, el cual ha retrocedido con respecto al plano de falla (fig. 7.1).

A pesar de su origen los escarpes tienen una serie de rasgos en común. Entre ellos están los siguientes:

- Posee un frente abrupto
- Presentan una base lineal o suavemente ondulada

- Presencia de manantiales alineados
- Se observan valles en V con fondo rocoso
- Se observan facetas triangulares, cuando el escarpe está cortado por valles (fig. 7.2).

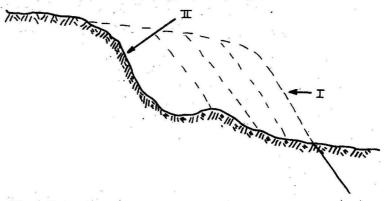


Fig. 7.1 Retroceso de un escarpe de falla.

- I) Posición inicial del escarpe,
- II) Posición final del escarpe.

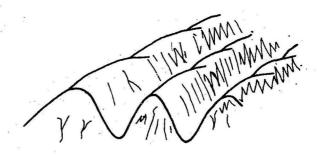


Fig. 7.2 Facetas triangulantes originadas por escarpe tectónico.

A pesar de sus rasgos comunes existen criterios para diferenciar ambos tipos de escarpe.

Criterio para el reconocimiento de los escarpes de falla

Mediante el estudio de los mapas y observaciones de campo se puede determinar la existencia de escarpes de fallas teniendo en cuenta algunos criterios como son:

- Escarpe coincidente con el plano de falla
- 1) Pobre correlación entre la resistencia de las rocas y la topografía. Si las rocas en las elevaciones del escarpe son más débiles que aquellas situadas frente a él en las depresiones o si los materiales o ambos lados de la falla son débiles (sedimentos poco consolidados, hay evidencias de que el escarpe ha sido producido por fallamiento reciente, puesto que a lo largo de un escarpe de línea de falla existirá una correlación estrecha entre la topografía y la resistencia de las rocas.
- 2) Interrupción del drenaje fluvial por escarpe. Si el escarpe se orienta corriente arriba e intercepta un valle formando en su base un lago, hay fuertes evidencias de fallas recientes.
- 3) Frecuentes terremotos asociados a escarpes.
- 4) Desplazamiento de formas topográficas más antiguas.
- 5) Dislocación de depósitos pleistocénicos o recientes a lo largo del escarpe.

Criterios para determinar escarpes de línea de fallas

- 1) Escarpe situado en el bloque yacente de la falla
- 2) Estrecha correlación entre la resistencia de las recas y topografía.
- 3) Edad pre-pleistocénica de la falla

Otros reflejos de las fallas en el relieve

Las fallas pueden manifestarse de otra forma en la topografía ya que ellas implican zonas de debilidad estructural debido a la trituración a que han sido sometidas y
en muchas ocasiones estas tienden a seguir la falla.

Igualmente cuando una corriente sigue un curso recto y
prolongado a lo largo de varios tipos de rocas y estructura es posible que el mismo siga una falla. De igual forma las zonas de falla son a menudo zonas de frecuentes
deslizamientos.

Relieve desarrollado sobre diferentes tipos de estructuras falladas

Los diferentes tipos de estructuras falladas se reflejarán con características propias en el relieve.

- Fallas normales. El relieve desarrollado a lo largo de bloques levantados o limitados por fallas dependerá del tipo de rocas presente.
 - En una región de rocas masivas u homogéneas el relieve se presentará como un macizo montañoso elevado con frentes bien delimitados por escarpes de fallas o de lima de fallas.
 - Si se trata de rocas estratificadas con diferentes durezas, tras el escarpe que limita el frente montañoso se presentará una serie de elevaciones y valles formando una topografía como la vista anteriormente.
- Fallas inversas imbricadas. Las fallas imbricadas provocan la repetición de capas que dan lugar a un tipo de topografía similar a la desarrollada en las áreas de rocas plegadas o monoclinales con capas de diferente dureza, ya que se desarrollarán una sucesión de cuestas y cordilleras, con la diferencia de que aquí las elevaciones o depresiones se

forman sobre una o un número muy limitado de formaciones o sea no es sobre diferentes horizontes (fig. 7.3).

Fig. 7.3 Relieve desarrollado sobre fallas inversas imbricadas.

- Fallas de sobrecorrimiento. Generalmente no se expresan bien en la topografía, los escarpes de falla
o de líneas de falla son de menores dimensiones y
contorno irregular. Después que un manto ha sido
erosionado, quedando partes del mismo aisladas del
cuerpo principal llamadas Klipples, estas no pueden distinguirse de otros no relacionados con mantos de cabalgamiento.

Igualmente los fensters o ventanas tectónicas (zonas donde el manto ha sido erosionado y se expone el subtrato rocoso autóctono) no presentan características especiales para reconocerlos en el relieve.

- Fallas de deslizamiento por el rumbo. Las fallas de este tipo activas se caracterizan por una serie de rasgos como desplazamientos laterales de los macizos montañosos, desplazamientos de los cursos fluviales, etc. Además de los rasgos comunes presentes a lo largo de todos los tipos de fallas. En Cu-

ba existen al parecer algunas fallas activas de este tipo como es el caso de la falla Pinar que se destaca muy bien en el relieve. En nuestro caso, sin embargo, es necesario demostrar de una forma más concluyente que hasta la actualidad, la presencia de estas estructuras.

Conclusiones

Las fallas en su representación en el relieve lo pueden hacer en dos formas. Una por la acción del propio movimiento de los bloques en el caso de las fallas activas. En el segundo caso, la acción es pasiva, controlando esta la erosión diferencial.

Cada tipo de falla dará lugar a una combinación de rasgos del relieve que le son propios y que en algunos casos permiten reconocerlos.

CAPÍTULO 8 RELIEVE CÁRSICO

Introducción. Regiones cársicas más importantes

El desarrollo del relieve cársico se encuentra relacionado con aquellas áreas donde son abundantes rocas solubles o relativamente solubles como calizas y dolomitas, donde existen condiciones climáticas adecuadas que favorecen la disolución de las rocas. Este proceso de disolución da lugar a un tipo especial de topografía donde el drenaje es esencialmente subterráneo.

La denominación de carso a este tipo de estructura proviene de la meseta de Karst, situado al norte de Yugoslavia.

B1 carso se desarrolla fundamentalmente sobre calizas y dolomitas, aunque en algunos casos pueden ser también evaporitas (yeso, halita, etc) pero estas áreas cársicas son escasas.

Las diferentes variedades de carso que se desarrollan en Cuba lo hacen sobre las formaciones calcáreas que cubren una parte considerable de la superficie las que son en su mayor parte más jóvenes del Neógeno, aunque hay áreas en que el mismo se desarrolla sobre secuencias cársicas más antiguas del Eoceno, Cretácico, Jurásico.

En áreas cercanas a Cuba como Yucatán, Jamaica y Puerto Rico existe también gran desarrollo del carso.

El estudio del carso es importante no sólo desde el punto de vista científico sino también desde el punto de vista práctico tanto para la hidrogeología e Ingeniería Geológica.

Condiciones esenciales para el desarrollo del carso
Para la formación del relieve cársico bien desarrollado se requiere de un conjunto de condiciones como:

1) Existencia en la superficie o cerca de este de roca soluble preferentemente calizas.

- 2) La roca soluble debe ser compacta y cortada por un buen número de grietas. Las rocas con permeabilidad por porosidad son poco favorables ya que las aguas se moverán a través de toda la roca y no se concentrarán a lo largo de determinados planos. El carso implica un concepto de disolución diferencial.
- 3) Existencia de valles hacia los cuales drenen las aguas de las zonas cársicas más elevadas. Es decir las aguas subterráneas deben descender a través de las calizas, llevar a cabo la disolución de ellas y emerger para formar corrientes superficiales.
- 4) La región debe tener precipitaciones relativamente abundantes. Todas las áreas cársicas se encuentran en regiones de clima húmedo. Las excepciones pueden explicarse por la existencia de climas más húmedos durante el Pleistoceno.

Rasgos característicos de las regiones cársicas

Los procesos cársicos originan formas muy variadas de relieve, tanto de carácter erosional o de disolución, como producidas por acumulación. Todas las formas del relieve cársico no se desarrollan en una región, el número de estas depende de las condiciones favorables para su formación.

En Cuba no existe un acuerdo general para denominar las formas del relieve cársico. Nosotros utilizaremos la nomenclatura elaborada por el Departamento de Geología e Hidrogeología del Ministerio de la Construcción, basada en el esquema del geomorfólogo soviético Spiridinov.

Estas formas del relieve son:

- a) lapies;
- b) sumideros;
- c) dolinas;
- d) poljas;

- e) cavernas;
- f) mogotes.
- a) Lapies (Karren, dientes de perro). Son formas desarrolladas en la superficie de las rocas, la cual se muestra con numerosas depresiones de bordes a menudo filosas. Las depresiones pueden ser de contornos redondeados o bien alargados;
- b) Sumideros. Son orificios de pequeño tamaño situados generalmente en el fondo de las depresiones cársicas mayores (ep. Dolinas). Estos pueden ser abiertos si dejan pasar el agua libremente o cerrados si han sido taponeados por sedimentos;
- c) Dolinas. Son las formas superficiales más propagadas del curso, en forma de depresiones cerradas con un diámetro de decenas y a veces centenares de metros. Su profundidad generalmente no supera a la mitad de su diámetro. En planta su forma puede ser redondeada, ovalada o irregular. Las dolinas pueden tener diversos origenes, distinguiéndose en base a ello los siguientes tipos:
 - Dolinas de hundimiento: Se originan por el desprendimiento de una cavidad cársica. Se caracterizan por lo pronunciado de sus bordes, forma cilindrica y apilamiento de bloques de las rocas desplomadas que cubren el embudo.
 - Dolinas de infiltración: Se desarrollan en aquellas regiones de carso cubierto donde en la superficie yacen sedimentos arenosos y arcillosos a través de los cuales se infiltra el agua y disuelve la caliza subyacente. Presentan formas cónicas cuando el lavado del material arcilloso se produce a través de un sumidero único. Si la infiltración se produce en varios puntos cercanos su forma es menos regular.

- Dolinas de lixiviación: Son producidas por la disolución de la caliza a lo largo de zonas más favorables.

Cuando el sumidero en el fondo de la dolina es bloqueado y el fondo cubierto por sedimentos arcillosos que lo impermeabilizan pueden formarse lagunas temporales o permanentes debido al drenaje de las aguas hacia la depresión.

- d) Poljas. Son las mayores depresiones de origen cársico que pueden alcanzar dimensiones de varias decenas e incluso centenares de km2. Pueden distinguirse los siguientes tipos de poljas;
 - Poljas de lixiviación superficial: Surgen de la fusión de varias dolinas de lixiviación superficial decenas. Ejemplo, polja de San Vicente en la Sierra de los Órganos.
 - Poljas de hundimiento: Se originan como resultado del derrumbe de extensas cavidades subterráneas.
 - Ejemplo. Hoyo de Potrerito en la Sierra de los Órganos. (Se conocen también por Urales).
- e) Cavernas. Son cavidades subterráneas de formas variadas que pueden extenderse vertical u horizontalmente y ocupar uno o más niveles. Las cavernas muestran varias formas deposicionales o acumulativas asociadas, tales como las estalactitas y estalagmitas originadas por la sedimentación del CO, Ca al salir del agua de las grietas hacia el interior de la caverna,

A veces las cavernas pueden rellenarse en mayor o menor grado por aluviones sedimentados por los ríos subterráneos que circulan por ellas;

f) Mogotes. Son elevaciones calcareas, residuos de la erosión cuando el ciclo erosivo carsico an negiones elevadas se encuentra en un estado avanzado. En ocasiones estos pueden elevarse hasta 200 ó
400 m por sobre el nivel de los valles adyacentes
en forma de elevaciones de paredes verticales. Los
de Cuba tienen habitualmente cimas redondeadas,
pero en otras regiones estas son puntiagudas. Los
mogotes tienen una enorme cantidad de cavernas que
los cortan.

Origen de las cavernas

Existen varias teorías para justificar o explicar el origen de las cavernas pero ellas pueden reunirse en dos grandes grupos.

- 1) Plantean que las cavernas se originan por debajo del nivel freático.
- Plantean que las cavernas se han originado por la disolución sobre el nivel freático.

Los defensores del origen por debajo del nivel freático argumentan que las calizas se disuelven aún con el contenido de CO₃Ca de las aguas a ese nivel, es decir, que las aguas no están saturadas de los iones que participan en el complejo de reacciones de disolución del CO₃Ca y que por esto son capaces de disolverlo. Ellos además plantean que las cavernas forman una red tridimensional entrelazada en vez de la red ramificada común de los ríos y existen muchas galerías ciegas difíciles de explicar por la acción erosiva de las corrientes. Además en muchas cavernas no se observa el perfil longitudinal graduado típico de gran parte de los ríos.

Los geomorfólogos del segundo grupo afirman que por debajo del nivel freático las aguas están saturadas de CO₃Ca y no son agresivas. Según ellos las cavernas se han originado fundamentalmente por la acción de disolución y erosión de los ríos subterráneos que corren por encima

del nivel freático.

A pesar de la divergencia entre estas dos teorías existen testimonios de cavernas originadas tanto por uno u otro medio indistintamente.

Estudio de algunas áreas cársicas de Cuba Variedades de carsos presentes en Cuba y regiones cársicas de Cuba

En Cuba los fenómenos cársicos están muy extendidos y pueden ser incluso los dominantes en amplias regiones, en tanto que en otras tienen un desarrollo limitado.

Según Núñez Jiménez, una de las principales autoridades en el estudio del carso en Cuba, pueden distinguirso las siguientes variedades:

- a) carso cónico;
- b) carso de lomas, montañas y mesetas;
- c) carso llano;
- d) carso parcialmente sumergido en zonas pantanosas;
- e) carso parcialmente sumergido en el mar;
- f) carso costero;
- g) carso de las terrazas emergidas.

Carso cónico. Esta es una variedad que se presenta en varias regiones, siendo la más notable la Sierra de los Órganos en Pinar del Río, elevaciones que se extienden a lo largo de 125 km entre Guane y San Diego de Los Baños.

La Sierra está constituida por hileras casi paralelas de mogotes desarrollados fundamentalmente en las calizas del Jurásico Superior de la Fm Viñales, rodeadas por el Norte y el Sur y a veces entre ellas por lomas suaves de rocas pertenecientes a la Fm San Cayetano del Jurásico Inferior y Medio de esta región.

Aquí en la Sierra de los Órganos Núñez Jiménez distingue dos tipos de elevaciones: Mogotes solitarios y conjunto de conos cársicos (mogotes).

Los mogotes aislados están situados en valles cerrados como el de Viñales.

El conjunto de conos cársicos o cadenas de mogotes presentan una asociación de elevaciones alineadas como las sierras de Sumideros o Galeras.

Los mogotes de la sierra de Los Órganos están cortados por cavernas las que se agrupan en niveles. Muchas de ellas presentan evidencias de haber sido lechos de ríos subterráneos, pues su peso está cub erto por aluviones y presentan vestigios de erosión fluvial.

Otras regiones con carso cónico son: Las Escaleras de Jaruco en La Habana, Alturas de Maniabón (Holguín) y las elevaciones de la Sierra Maestra al Sur de Baire.

Carso de lomas y mesetas. Se presenta en regiones elevadas que no poseen carso cónico por ejemplo la Sierra del Rosario en Pinar del Río donde existen ríos subterráneos, cavernas, etc, pero el modelado del relieve se realiza principalmente por procesos erosivos superficiales ya que las elevaciones calcáreas con carso constituyen la divisoria de las aguas.

Este carso está muy extendido en diferentes macizos montañosos de Cuba tales como las Alturas Habana-Matanzas, las del Norte de Las Villas, Escambray, Sierra de Cubitas, Maquey, Yateras, etc.

Carso llano. Se presenta en llanuras con gran cantidad de depresiones cársicas (dolinas) y diente de perro. El área de más amplio desarrollo de esta variedad es la Llanura Roja Habana-Matanzas.

Carso parcialmente sumergido en zonas pantanosas Está bien representado en Cuba. Las áreas más notables son:

- La laguna de Ariguanabo que es una depresión cársica rellena por varios ríos, donde el recubrimiento se debe al avance de la vegetación pantanosa desde las orillas. - Ciénaga de Zapata donde el enterramiento del relieve cársico se debe en primer lugar al aumento del nivel del mar provocado por la fusión de los glaciares (las turbas más antiguas de las ciénagas tienen unos 11 000 años por el C¹⁴ que es precisamente la edad que señalan muchos geólogos cuaternarios para el inicio o acentuación de la retirada de los glaciares de América del Norte, y Europa. También se relacionan con el fenómeno la tendencia a la subsidencia tanto en la Ciénaga de Lanier como en la de Zapata. El carso enterrado en estas regiones es llano.

Carso parcialmente sumergido en el mar. Algunas regiones costeras con desarrollo del carso sufrieron en el pasado geológico reciente transformaciones que cubrieron sus áreas más bajas. Núñez Jiménez considera que este es el caso de la Cayería de Norte al Caibarién que estima era una región original de carso cónico.

Carso costero. Muchas costas de Cuba están ocupadas por rocas calcáreas del Mioceno-Cuaternario sobre la que se desarrollan fenómenos cársicos. En especial la superficie de estas rocas está totalmente cubierta por diente de perro, presentando más bien cuevas excavadas por el mar.

Carso de terrazas emergidas. Presenta los rasgos del costero, encontrándose en ocasiones dolinas, sólo se diferencia del costero en la posición hipsométrica que ocupa, que aquí puede ser de hasta varios cientos de metros sobre el nivel del mar.

Conclusiones

Aún cuando el carso ha sido el aspecto más y mejor estudiado en la geomorfología de Cuba, existe un basto campo de estudio pues hay un gran número de fenómenos mal estu-. diados respecto al relieve, circulación de las aguas, edad del carso, etc. Estos problemas no sólo tienen interés teórico, sino también práctico puesto que el carso influye a menudo en la construcción de obras ingenieriles y es factor importante en la hidrogeología de extensas regiones de nuestro país.

CAPÍTULO 9 GEOMORFOLOGÍA DE LAS REGIONES COSTERAS

Introducción. Movimiento del agua de mar

En este capítulo estudiaremos el paisaje costero el cual es el resultado de la actividad erosiva y acumulativa marina producida por el movimiento del agua de los océanos.

Este movimiento se efectúa de tres formas: las olas debido a la acción del viento sobre la superficie de mares y océanos; las mareas originadas por la atracción de la luna y el sol y las corrientes marinas y turbias originadas por diferencias de temperatura y por ende de densidad, por vientos de dirección constante y por la acción de la gravedad.

En el curso de geología general se estudiaron diferentes tipos de olas: de traslación, oscilatorias y originadas por los maremotos.

Las olas de traslación son las que tienen mayor importancia para la topografía costera ya que son ellas
las que controlan fundamentalmente la erosión y el transporte de los materiales a lo largo de las costas, conjuntâmente con las corrientes de deriva costera y algunas
corrientes oceánicas que pasan cerca del litoral.

Las olas oscilatorias tienen menos importancia ya que actúan sobre el fondo en áreas relativamente alejadas de las costas y los Tzunamis son fenómenos muy raros por lo que influyen poco en el modelado del relieve. Por último las mareas tienen una importancia limitada en el modelado del relieve en la mayor parte de las costas.

Erosión marina

Come ya vimos anteriormente el agente fundamental en el medelado del relieve costero son las olas de traslación cuya actividad va a depender de diferentes factores

geológicos como son:

- a) litología a lo largo de la costa: Una costa donde afloran granitos o cuarcitas se erosionará mucho más lentamente que otra compuesta por margas;
- b) yacencia de las capas y grado de agrietamiento: A mayor número de grietas, mayor cantidad de planos de ataque y más efectiva la acción de las olas;
- c) profundidad del mar frente a la costa. De este factor depende la energía con la que las olas atacan
 las costas. Si el mar es muy somero y la plataforma continental muy amplia, descendiendo suavemente
 hacia el mar abierto, las olas rompen muy lejos de
 las costas y su pérdida de energía por fricción es
 muy grande, llegando habitualmente con muy poca
 intensidad a la orilla.
 - Si la plataforma continental es estrecha las clas rompen cerca de la costa o en ella misma y la efectividad del cleaje es mucha;
- d) abundancia y tamaño de los materiales abrasivos:
 Mientras más abundantes y mayores sean estos más efectiva es la erosión;
- e) configuración costera: La acción del oleaje es variable a lo largo de la costa, dependiendo de las formas de estos, su actividad erosiva es más activa en los salientes, en tanto que en los entrantes (bahías, ensenadas) tiene poco vigor.

Perfil costero

La intersección de la costa con el mar constituye la línea de costa. En muchos lugares esta está marcada por un escarpe resultente de la ercsión marina denominado acantilado. En dirección al mar hay un escalón o plataforma producido por las olas, al que se denomina banco del oleaje, el cual puede ser de roca firme o estar cubierto

temporalmente por depósitos arenosos que constituyen una playa. Un banco de oleaje puede terminar abruptamente o transicionar a una superficie menos inclinada labrada por olas, conocida por plataforma de abrasión. No existe un límite preciso entre ambas formas y en conjunto constituyen una terraza marina. En dirección al mar, después de la plataforma de abrasión se encuentra en zona de sedimentación que junto con la terraza constituye la plataforma continental, (fig. 9.1).

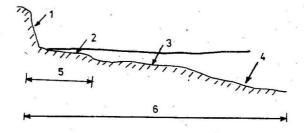


Fig. 9.1 Perfil costero. 1) Acantilado,
2) Banco de oleaje, 3) Plataforma de abrasión, 4) Zona de sedimentación, 5) Terraza marina,
6) Plataforma continental.

Veremos ahora el desarrollo de ese perfil costero.

Supongamos que la línea de costa en el inicio ha sido producida por la subsidencia reciente de una región costera de pendientes moderadas y que el relieve del mar permanece estable. En estas condiciones el perfil costero inicial tendrá pendientes moderadas, descendiendo sin que existan grandes profundidades junto a la costa, rompiendo las olas antes de llegar a ella. La erosión comienza rápidamente la construcción de un acantilado, comenzando a desarrollarse un banco de oleaje. El material derivado de

la erosión del banco se acumulará en su parte externa como un talud submarino y se inicia así una terraza de acumulación. Este es el estadio de juventud del desarrollo de la costa. Las olas realizan una gran actividad erosiva y de transporte, la pendiente por la cual se desplaza el material no está graduada. Al avanzar la erosión de las olas hacia el interior su acción contra el acantilado es menor en intensidad ya que tiene que cruzar distancias cada vez mayores de aguas someras.

La continua abrasión reducirá la terraza erosional a una cuya pendiente es justamente la suficiente para el movimiento de los materiales hacia el mar adentro lográndose el perfil de equilibrio. Este perfil es cóncavo en aquella parte que aún sufre activamente la erosión y convexo dende ocurre la sedimentación (terraza constructiva). En este momento se considera que el perfil ha alcanzado su madurez. El aumento de la distancia entre el acantilado y las aguas profundas provoca que los materiales tarden más en ser transpertados y que estos permanezcan temporalmente a lo largo de las costas, dando lugar a las playas. Los depósitos de este tipo crecen durante los períodos de calma, pudiendo ser barridos totalmente durante las tormentas.

Algunos geólogos opinan que el mar es capaz de crear peniplanos similares a los fluviales. Sin embargo no está probada la existencia de grandes superficies de peniplanización marina. Se conocen muchas terrazas marinas pero estas se extienden como bandas de a le sumo de algunos kilómetros a lo largo de las costas.

La erosión merina está tan locatizada a lo largo de una estrecha franja, ya que la formación de un peniplano abrasivo marino requiere un período prolongado de estabilidad del nivel del mar y de tranquilidad tectónica, lo que hace poco probable que la formación de peniplanes

similares a los fluviales pueden ocurrir. Por ejemplo un pequeño ascenso de la costa de solo unos metros puede provocar el fin de todo el proceso abrasivo marino en la línea de costa y su reinicio a una cierta distancia mar adentro. Es por esto que las superficies llanas que se observan por debajo de la mayoría de las discordancias erosionables son obra casi siempre de los procesos denudativos continentales retocados en detalle por la erosión marina.

Rasgos topográficos resultantes de la erosión marina
Las formas del relieve más comunes resultantes de la
erosión marina son los acantilados y terrazas. Los detalles de estas formas dependen de la litología y yacencia
de las capas a lo largo de la línea de costa fundamentalmente para los acantilados así como de la estabilidad tectónica y deslizamiento del nivel del mar para las terrazas.

A lo largo de las costas la velocidad de las olas es diferente por lo que se comportará de igual forma la energía, lo que hace evidente que la intensidad de la erosión variará a lo largo de la costa. Teniendo en cuenta este factor así como la resistencia de las rocas y forma de la costa se originará una erosión diferencial que dará lugar a que se originen curvas y pequeñas ensenadas.

Los entrantes mayores de las costas como las bahías se originan por subsidencia de la costa que sumerge a una topografía labrada por agentes continentales.

Las áreas de rocas más resistentes pueden permanecer como salientes. Cuando la erosión es vigorosa en ambos flancos del cabo o saliente este puede quedar aislado.

Rasgos topográficos resultantes de la sedimentación marina

Los procesos acumulativos dan lugar a algunas formas del relieve costeró como son las playas y barras.

Las playas: son depósitos de materiales sueltos situados a lo largo de la costa. Cuando esta es abierta los sedimentos son muy inestables y tienden a ser barridos durante las tormentas. En las costas acantiladas las playas se limitan a franjas aisladas en el interior de las bahías, debido a que las olas convergen sobre los salientes y se hacen poco efectivas en los entrantes o bahías, acumulándose en ellos los materiales erosionados en los primeros.

Las barras son acumulaciones de arena y grava que se elevan desde el fondo del mar, construidas por las olas y corrientes marinas. Las barras que se unen a la tierra se originan por la migración de los sedimentos a lo largo de una costa arrastrados por las corrientes.

Al cambiar la dirección de la costa, la corriente mantiene su antiguo rumbo y deposita los sedimentos los que al acumularse van a formar un saliente paralelo a la corriente, que puede extenderse por varios kilómetros e incluso más.

Existen las barras completamente separadas de la costa, conocidas como barras prelitorales que se desarrollan a distancias variables de la costa que fluctuan desde centenares de metros hasta varios kilómetros. Estos se originan por la erosión de los sedimentos sueltos del fondo y su acumulación frente a los rompientes.

Clasificación y desarrollo de las costas

Hasta el momento no existe una clasificación de las costas universalmente aceptada. Esto está dado por las grandes fluctuaciones del nivel de mar durante el Cuaternario, el cual en varias ocasiones ha avanzado y retrocedido sobre los continentes creando a lo largo de muchas

costas rasgos típicos de sumersión y emersión. Además en muchas costas han ocurrido movimientos tectónicos de ascenso o descenso. Todo esto lleva en muchos casos a confusiones sobre el origen de las costas al combinarse en una misma zona fenómenos atribuibles tanto a la emersión como a la sumersión.

A pesar de estas dificultades las costas pueden dividirse en dos grandes grupos:

- a) costas de emersión;
- b) costas de sumersión.

Las costas de emersión dependen en sus características del relieve del fondo oceánico. Si la costa emergente está bordeada por una zona de fondo marino con pendientes suaves, las olas no atacan con vigor la línea de costa puesto que rompen mar afuera. Se originan barras prelitorales las cuales van migrando progresivamente hacia tierra al ser atacadas por las olas, uniéndose finalmente a la línea de costa.

La segunda variedad se desarrolla cuando frente a la costa el mar es el suficientemente profundo para que las olas ataquen directamente la costa. En esta situación se originan terrazas marinas a lo largo de la costa las cuales indicarán períodos de relativa tranquilidad en el cual se forma el acantilado y la terraza, seguidos por rápidos ascensos que levantan la costa y con ella la terraza recien formada.

Las costas de sumersión tienden a ser muy irregulares debido a que el mar cubre a menudo un relieve irregular, penetrando por los valles e inundándolos, en tanto que las elevaciones se presentan como islas o salientes. Una costa con estas características se aprecia muy bien entre la desembocadura de los ríos Sagua y Mayari donde la última transgresión cuaternaria inundó las partes bajas de un relieve de colinas, formándose amplias bahías de bolsa

en estos valles inundados.

La forma irregular de la costa es característica de las zonas de sumersión reciente. Posteriormente al atacar la erosión marina la línea de costa, concentrándose en los salientes, esta se hace más recta, formándose progresivamente acantilados.

CAPÍTULO 10 USO DE LOS MAPAS TOPOGRÁFICOS Y FOTOS · AÉREAS EN INVESTIGACIONES GEOMORFOLÓGICAS

En el desarrollo de las investigaciones geomorfológicas al igual que todo tipo de investigaciones geológicas se usa como base fundamental el trabajo u observaciones de campo, no obstante a ello previo al trabajo de campo e incluso durante este se utilizan diversos medios de información que lo complementan y facilitan su desarrollo.

Entre esos medios auxiliares los más útiles en las investigaciones geomorfológicas están los mapas topográficos y las fotos aéreas.

Mapas topográficos

Para su uso en la geomorfología los mapas más útiles son los de escala 1:50 000 y mayores. Los de menor escala representan el relieve de forma muy generalizada y muchos rasgos detallados no aparecen reflejados. Además, las curvas de nivel están muy distanciadas.

El estudio de la red de drenaje en los mapas topográficos es de vital importancia para el estudio geomorfológico ya que la misma tiene estrecha relación con la estructura geológica y la historia reciente del área.

La red dentrítica que es la más común indica homogeneidad litológica o sea igual resistencia a la denudación; o la presencia de capas con yacencia horizontal. De igual forma los otros tipos de redes de drenaje correspon den a determinadas características estructurales que ya vimos anteriormente.

Otro factor importante a estudiar en los mapas topográficos es la forma que presentan las elevaciones ya que nos dan idea de la estructura geológica. Como vimos las masas, crestas, etc. responden a una determinada estructura del substrato rocoso.

Podemos concluir que teniendo un mapa topográfico a escala tal que nos permita estudiar la red de drenaje en conjunto con las formas de las elevaciones podamos obtener algunas conclusiones acerca de la estructura geológica de una región.

Mapas morfométricos

Los mapas de isolineas construidos exclusivamente en base a los datos de las hojas topográficas. Su objetivo es el estudio de los movimientos tectónicos recientes (neotectónicos) y las estructuras de diversos órdenes producidas por ellos. Existen varios tipos de mapas morfométricos, a continuación veremos algunos de ellos.

Mapa de isobasitas

Es el mapa morfométrico. Para su construcción se traza en primer lugar la red de orden de los ríos. A continuación se unen por líneas rectas todos los puntos en que los ríos de determinado orden corten a una misma curva de nivel. De esta forma se obtienen diversas isolineas conocidas como isobasitas, existiendo mapas de isobasitas de distintos órdenes. Su construcción está dada por la maga nitud de las estructuras neotectónicas de interés. Así en un mapa de isobasitas de segundo orden solo se utilizan los ríos de ese orden y se construyen para detectar pequeñas estructuras. Ya uno de tercer orden detecta estructuras mayores que las anteriores.

Mapa de relieve residual

Para su construcción se resta el valor de las curvas de relieve de el de las isobasitas en sus puntos de intersección. A cada punto así obtenido se le asigna el valor correspondiente y a continuación se unen por medio de isolíneas rectas, los puntos de igual valor. Este mapa representará el volumen de rocas que yacen por arriba de las isobasitas del orden utilizado.

Mapa de superficie de cumbres

Utilizan para su construcción el orden de las divisorias de las aguas. Una división de 1er. orden es aquella que no se divide. Una de segundo orden está formada por la unión de dos de primer orden y así sucesivamenté: A continuación se marcan los puntos que las divisorias de un mismo orden cortan a las curvas de nivel, uniéndose después los puntos de igual valor. Las isolíneas obtenidas se disponen por completo por encima de la superficie actual tocando a las divisorias.

Las fotos aéreas y los estudios geomorfológicos Las fotos aéreas tienen una importancia cada vez ma-

yor tanto en la geología como en la geomorfología.

Las fotos aéreas pueden ser de tres tipos: verticales. oblicuas y compuestas. Las primeras se toman con el eje de la cámara en posición vertical; en tanto que en las oblicuas el eje de la cámara está inclinado. Las fotos compuestas se toman con varios lentes y cubren un área externa. Estas dos internas variantes en especial las oblicuas se utilizan con fines ilustrativos en artículos, informes, etc. En adelante sólo nos referimos a las fotos aéreas verticales que son las más utilizadas en el trabajo geológico y geomorfológico.

Para tomar estas fotos el avión realiza su vuelo siguiendo una serie de líneas imaginarias paralelas y la cámara (o cámaras) en él instaladas toman fotos cada un determinado lapso de tiempo de forma tal de que en fotos sucesivas exista un área relativamente grande en común. producióndose de esta forma un área de solape, la cual debe existir no solo en fotos de una misma linea de vuelo, sino también entre fotos de lineas contiguas.

La gran ventaja de las fotos aéreas es la enorme cantidad de información que hay presente en potencia en ellas. Hay muchos rasgos del relieve que aparecen en las fotos y que no están reflejadas en los mapas o que no pueden observarse directamente en el campo.

La interpretación de las fotos aéreas no es una tarea fácil, haciéndose en ocasiones más difíciles debido a lo tupido de la vegetación y profunda meteorización como ocurre en los climas húmedos como Cuba. Para el estudio de estas se requiere de bastante experiencia de campo y el estudio de un buen número de fotos. Cuando estos se utilizan bien, ahorran un considerable trabajo de campo y este alcanza mayor efectividad y se hace más económico.

El estudio de las fotos aéreas se realiza habitualmente con estereoscopios para obtener efectos de tercera
dimensión. Para esto se colocan dos fotos que cubran un
área en comén (con solape). Los puntos comunes a ambas
fotografías deben estar separados alrededor de 2½ pulgadas, obteniéndose a través del estereoscopio una imagen
tridimensional (con la escala vertical exagerada). Con
la práctica la visión tridimensional de las fotos puede
lograrse sin el uso del estereoscopio, aunque no se obtiene el aumento en la escala de la foto.

Los principales rasgos para la interpretación de las fotos aéreas son:

- 1) Formas características del relieve. .
- 2) Tipos de drenaje y textura.
- 3) Variaciones en los tonos grises en las fotos,
- 4) Tipo y distribución de la vegetación.

El reconocimiento de las formas del relieve junto con sus implicaciones es un elemento básico en el desciframiento de las fotos (ejemplo questas, valles monoclinalas, ato). La textura del drenaje expresa la permeabilidad de la roca subyacente y permite identificar áreas con rocas de distinta permeabilidad por ejemplo, distinguir areniscas de lutitas.

Prácticamente todas las fotos exhiben variaciones en las tonalidades grises debido a las diferencias en el poder de reflexión de la superficie determinado por factores tales como el color del suelo o roca, humedad y contenido de materia orgánica. Estas variaciones habitual mente se agrupan en formas definidas indicadoras de diver sos tipos de suelos, rocas, formas de relieve o vegetación. Es un problema a resolver durante la interpretación el descifrar estas variaciones, pudiendo requerir la realización de un trabajo de campo para buscar las causas, pero una vez halladas pueden ser de mucha utilidad en el mapeo.

El tipo de erosión que sufren las rocas permite identificarlas en las fotos. Ejemplos, la presencia de dolinas, corrientes discontinuas, etc, identifican las áreas cársicas.

El desarrollo extensivo de carcavas es típico de las áreas subyacidas por lutitas, en tanto que los depósitos de arena y grava se caracterizan por su escaso drenaje debido a su gran permeabilidad, etc.

El estudio de la distribución de la vegetación arroja datos muy valiosos ya que esta refleja generalmente la influencia de diferencias en los suelos que pueden ser originados por diferencias litológicas de las rocas madres. Es necesario tener en cuenta que las variaciones en la vegetación a menudo están relacionadas con cambios en las condiciones climáticas a un lado y otro de las elevaciones.

Reconocimientos de los distintos tipos de rocas y estructuras en las fotos aéreas

En las fotos aéreas puede obtenerse mucha información sobre la geología del área estudiada a pesar de las limitaciones que ofrecen los suelos, la cobertura vegetal o la falta de relieve.

En regiones de capas horizontales sus afloramientos seguirán las curvas de nivel y por ello sus contactos se presentarán como bandas muy sinuosas. Si las capas buzan abruptamente su banda de afloramiento o los rasgos topográficos que la reflejan son rectilíneos o poco sinuosos. Las capas verticales pasan a través de los rasgos topográficos sin desviarse.

Los sistemas de grietas si el suelo no es profundo pueden venir marcados en las fotos por rasgos tales como el drenaje rectangular o angular, alineación de dolinas o de la vegetación, etc. Las fallas vienen sugeridas por desplazamientos de afloramientos, rasgos topográficos, o de la vegetación.

Las estructuras plicativas pueden resultar evidentes o sugeridas por rasgos tales como elevaciones o zonas de vegetación paralelas o convergentes, así como drenaje enrejado, radial o centrípeto.

Los diques en muchas ocasiones originan elevaciones y a veces depresiones. Estas formas pueden ser poco visibles en las fotos, pero frecuentemente ellos presentan variaciones en cuanto a la tonalidad con respecto a las rocas que los rodean.

Los Stocks se distinguen bien por su contraste de color, contorno circular o semicircular o por su expresión topográfica.

Los batolitos por sus dimensiones son difíciles de distinguir puesto que sus contactos pueden no estar expuestos en el área de la foto. A no ser que la roca plutónica esté muy fallada el drenaje desarrollado será dendrítico. El relieve sobre el batolito tiende a ser uniforme y no se distinguen alineaciones de afloramientos característicos de las capas sedimentarias.

Las rocas metamórficas son difíciles de distinguir de sus rocas madres en las fotos. En general, durante los procesos metamórficos se originan minerales más resistentes a los procesos de meteorización. Esto se reflejará en el relieve. Por otra parte el metamorfismo regional tiende en cierta medida a homogenizar la composición de las rocas lo cual motiva que la erosión diferencial en ellas disminuya y se desarrolle el drenaje dendrítico.

Conclusiones

Como puede apreciarse los mapas topográficos y fotos aéreas son de vital importancia en los estudios geomorfológicos y en las investigaciones geológicas. Su uso adecuado y sistemático es de gran utilidad pues brindan gran información y ahorran trabajo de campo. CAPÍTULO 11 GEOMORFOLOGÍA Y NEOTECTÓNICA.

Introducción

Durante el transcurso de la asignatura hemos hablado y ejemplificado constantemente la notable influencia que sobre los procesos geomorfológicos tienen los movimientos tectónicos. En esta conferencia estudiaremos la influencia de los movimientos ocurridos durante la última parte de la historia geológica del planeta, (es decir los movimientos neotectónicos) en la topografía y los métodos de estudio de los mismos.

Neotectónica. Definición y campo de estudio

Por lo visto anteriormente podemos definir como neotectónica a la rama de la geología que se dedica al estudio de los movimientos tectónicos del Neógeno y Cuaternario, es decir los movimientos continentales ocurridos durante los últimos 26 x 10⁶ años.

Los métodos de trabajo de la neotectónica se diferencian en muchos aspectos de los clásicos en la geología estructural. Ellos se basan en gran medida en la geomorfología puesto que los desplazamientos y estructuras que estudia han de reflejarse de una forma u otra en el relieve.

Tipos de movimientos. Contemporáneos y recientes Los movimientos neotectónicos de acuerdo al tiempo en que se han desarrollado pueden dividirse en dos grandes grupos de acuerdo a Jain.

- 1) Movimientos actuales o contemporáneos.
- 2) Movimientos modernos o recientes.

Estudio de los movimientos contemporáneos o actuales Como tales se entienden los ocurridos durante los

tiempos históricos siendo susceptibles de ser medidos instrumentalmente. Jain considera que aquí solo deben incluirse aquellos movimientos transcurridos durante los últimos 6 000 años en los cuales el nivel del mar se ha mantenido bastante constante.

El estudio de los movimientos actuales se realiza fundamentalmente por métodos geofísicos. Datos muy valiosos sobre movimientos verticales se obtienen comparando los resultados de nivelaciones sucesivas de alta precisión. Los desplazamientos horizontales pueden estudiarse comparando los resultados de triangulaciones sucesivas. Aparte de los métodos geofísicos para el estudio de los movimientos actuales pueden utilizarse también los métodos arqueológicos. Por ejemplo, a lo largo de muchas costas pueden encontrarse antiguas construcciones hoy hundidas bajo el mar o muelles y otras instalaciones construidas en la línea de costa situadas ahora a una cierta distancia tierra adentro considerablemente levantadas sobre el mar. Conociendo la edad de las construcciones puede evaluarse la velocidad de los movimientos.

Algunos métodos geomorfológicos para el estudio de los movimientos recientes. Estudio de las terrazas marinas y fluviales

Comprenden aquellos transcurridos desde el Mioceno hasta el inicio de los tiempos históricos hace unos 6 000 años .

En el estudio de estos movimientos en algunas regiones juegan un importante papel los métodos morfométricos, y desarrollados por el geomorfólogo soviético Filosofov y otros investigadores.

Como vimos anteriormente existen distintas variedades de mapas morfométricos y que se emplean para detectar estructuras en desarrollo en regiones donde ellas no se

reflejan claramente en el relieve. Los métodos morfométricos se basan en que a medida que crecen las estructuras influirán tanto en el relieve como en la rêd de drenaje (orden de los ríos). Por ejemplo, las interpretaciones de los mapas de isobasitas se fundamentan en el supuesto de que en las zonas de levantamientos tectónicos los ríos tenderán a profundizar más en sus cauces, aumentará el desmembramiento del relieve y por ello los ríos aumentarán de orden más rápidamente que en zonas neutras o con movimientos negativos. En el caso de que exista inversión del relieve ocurrirá lo contrario.

Los mapas morfométricos alcanzan su mayor aplicación en las regiones llanas de las plataformas. En estos las rocas yacen horizontales y los valles fluviales son poco profundos, por lo que las rocas expuestas a la erosión sobre grandes áreas son las mismas y no se marcan los efectos de la erosión diferencial. En este caso el más útil de los métodos morfométricos es el de isobasitas. Los de segundo orden reflejan bien los levantamientos locales en las plataformas, en tanto que los de órdenes mayores sirven para detectar estructuras cada vez más amplias.

En Cuba los métodos morfométricos posiblemente solo pueden ser aplicados con éxitos en regiones con una extensa cobertura de rocas jóvenes, tal como la llanura del Cauto.

En la mayor parte del territorio estos no se pueden aplicar ya que la estructura geológica de Cuba es muy compleja, lo que es un factor excluyente en la aplicación del método, además de que solo debe emplearse en regiones llanas.

Estudio de las terrazas marinas

Todo conjunto de terrazas es producto a la acción de movimientos tectónicos ascendentes intermitentes o de

descensos, también intermitentes del nivel del mar. La formación del banco de oleaje y la plataforma de abrasión, así como la erosión y retroceso del acantilado indican una posición relativamente estable de la línea de costa. A continuación debió sobrevenir un rápido descenso del nivel del mar y el desarrollo de una nueva terraza con su acantilado a un nivel inferior.

Durante el Cuaternario el nivel del mar ha sufrido considerables fluctuaciones debido a las glaciaciones y períodos interglaciales e igualmente se han desarrollado movimientos tectónicos de signos variables a lo largo de la costa. Todo lo anterior dificulta la definición del origen de algunas terrazas, aun cuando existen algunos criterios para distinguir las terrazas de origen eustático de aquellas de génesis tectónica como son:

Las terrazas originadas por fluctuaciones del nivel del mar tienden a mantener un mismo nivel durante distancias considerables, a veces de decenas y centenares de kilómetros a lo largo de la costa, ejemplo el mar Caspio que durante el Cuaternario ha ido secando progresivamente. Además las terrazas de origen eustático no pueden elevarse a más de algunas decenas de metros por sobre el nivel del mar.

Las de origen tectónico pueden distinguirse con bastante seguridad en el caso de que a lo largo de la costa
corran fallas. El origen tectónico de la costa se refuerza si la línea de costa se extiende recta durante decenas
y a veces centenares de kilómetros y si además lo hace
paralelo a determinadas estructuras geológicas. Estas
terrazas pueden presentarse deformadas debido a los movimientos diferenciales ocurridos, pudiendo presentarse
inclinadas o falladas. Por último aquellas terrazas situadas a alturas considerables, superiores a varias decenas de metros son de origen tectónico puesto que el ni-

vel del mar no alcanzó durante el Cuaternario tales alturas. Un ejemplo de este tipo de terraza son las de Maisí que llegan a un total de 19, con unos 500 m de máximo como altura y solo 7 son apreciables en toda el área o gran parte de ella. Estos no mantienen una misma altura a lo largo de toda su extensión y muchas, sobre todo las superiores están onduladas o bien levantadas o hundidas por fallas, lo que permite determinar que se han originado en la nariz de un anticlinal en ascenso, el cual es asimétrico, estando su flanco S más levantado que el N.

Estudio de las terrazas fluviales

Cuando vimos los procesos geomorfológicos fluviales, analizamos el origen de las terrazas. Ahora nos dedicamos a la interpretación neotectónica de las mismas.

Las terrazas fluviales no se originan sólo por movimientos de ascenso, pueden deberse a fluctuaciones climáticas o a descensos del nivel del mar. Es por ello que es fundamental para la neotectónica demostrar la génesis de terrazas. Anteriormente ya hemos tratado este problema.

La mayor parte de los geólogos y geomorfólogos coinciden en que la mayoría de las terrazas fluviales son de origen tectónico.

A lo largo de muchos ríos puede observarse como la altura de las terrazas sobre el lecho de la corriente aumenta en dirección a la cabecera así como también el número de terrazas. Esto ocurre en regiones que sufren levantamientos observados. Las terrazas situadas cerca del ápice de la bóveda, se levantarán más intensamente y por ello las mismas se separarán más que en las partes más bajas donde irán acercándose e incluso uniéndose, disminuyendo la cantidad total de terrazas.

En algunas regiones donde el río corta domos o anticlinales en ascenso estos pueden deformar a las terrazas capas con distintas resistencias a la denudación. Esto es muy característico ya que la erosión diferencial no es muy efectiva en la vejez.

- 3) En la formación de los peniplanos juegan un papel esencial los procesos fluviales. Podemos hallar en los peniplanos levantados restos de depósitos fluviales. Sin embargo, generalmente no se logran reservas pues son erosionados por las propias corrientes al profundizar sus cauces durante el ascenso del peniplano.
- 4) En un área de peniplano levantado que no ha sido muy erosionado se encuentran contradicciones topográficas. Las zonas de cabecera van a presentar condiciones de vejez, en tanto que en los valles el relieve es característico de la juventud con paredes abruptas.

Llanos estructurales

Los peniplanos levantados pueden confundirse con los llanos estructurales por su gran semejanza morfológica, aunque su génesis es distinta. Los llanos estructurales son superficies de poco relieve que se originan en regiones de capas horizontales, donde un estrato de rocas resistentes sirva de escudo protector a las rocas subyacentes y la superficie del terreno está limitada por el techo de dicha capa.

La capa dura sirve de base temporal a los ríos que la erosionan con mucha dificultad. Las corrientes se desplazan lentamente, erosionando las rocas situadas por arriba de la capa dura, quedando así una superficie llana.

Tarde o temprano los rios logran profundizar a través del estrato duro y la superficie llana así originada queda levantada sobre el valle fluvial, pudiendo confundirse con un peniplano levantado.

Como puede verse la distribución entre un llano estructural y un peniplano levantado no es dificil ya que

en el primer caso se expresa claramente el control litológico-estructural de la forma de la superficie, en tanto que en el segundo este control está prácticamente ausente.

Edad de los peniplanos levantados. La determinación de la edad de los peniplanos levantados no es una tarea sencilla en gran parte de las ocasiones. El límite inferior de la edad de un peniplano lo dan las rocas más jóvenes cortadas por el. Muchas veces los datos obtenidos así son muy esquemáticos y la edad obtenida muy imprecisa.

Si hay depósitos fluviales o marinos asociados al peniplano, los fósiles que estos contengan pueden determinar con precisión la edad del peniplano, aunque a menudo estos depósitos son rápidamente erosionados durante el ascenso del peniplano. En ausencia de otros datos puede evaluarse la edad por las terrazas fluviales y marinas asociadas, si bien la edad de estas formas frecuentemente tampoco está determinada con precisión y es necesario realizar un estudio de la evolución geológica regional para tener más elementos.

A pesar de lo anterior, los estudios realizados en diversas regiones del planeta indican que la mayoría de los peniplanos levantados no son más antiguos que el Mioceno.

Movimientos neotectónicos en Cuba

Los movimientos neotectónicos en Cuba no han sido debidamente estudiados por lo que existen muchas incertidumbres sobre la historia geológica reciente de nuestro pais.

Por los pocos trabajos realizados se puede decir que los movimientos neotectónicos en Cuba son bastante contrastante. Por ejemplo, la región Sur de la antigua provincia de Oriente está elevándose rápidamente como lo

demuestran las terrazas levantadas y las pendientes muy abruptas del flanco sur de las montañas en tanto que las aguas de la fosa Bartlett sobrepasan los 7 km.

Hay evidencias que indican un levantamiento muy reciente de algunos de los macizos montañosos de Cuba. Por ejemplo en Cuba Oriental se conservan superficies peniplanizadas hasta altura de 900 m.

Gran parte de la isla sufre movimientos ascendentes de poca intensidad que originan un relieve, de colina y pequeñas elevaciones. Las áreas en subsidencia se caracterizan por presentar un relieve llano con algunas pequeñas elevaciones. Habitualmente constituyen los valles de algunos ríos en sus cauces inferiores (Cauto). En las llanuras de inundación de estos ríos se acumulan espesores bastante considerables de sedimentos Cuaternarios continentales y marinos. En la plataforma insular hay más bien áreas de subsidencia actual tales como el golfo de Guacanayabó.

El estudio de los movimientos neotectónicos tiene una considerable importancia, no solo para explicar la historia geológica reciente, sino también porque ellos determinan la localización de determinados yacimientos minerales. Tienen más bien gran interés ingeniero geológico por su incidencia en las obras ingenieriles.

CAPÍTULO 12 APLICACIÓN DE LAS INVESTIGACIONES GEOMOR-FOLÓGICAS

Aparte del interés científico que tiene el estudio del relieve y su evolución, la geomorfología tiene más bien un interés práctico, que lo hacen de gran utilidad en la búsqueda de los vacimientos minerales y en las investigaciones ingeniero geclógicas e hidrogeológicas.

Aplicación de la geomoriclogía en la búsqueda de yacimientos minerales

Los yacimientos minerales exógenos están relacionados de una forma u otra en su génesis con el relieve. Los estudios geomorfológicos pueden ser de mayor utilidad para la localización de estos yacimientos cuando su edad está comprendida entre el Neogeno y el Cuaternario ya que pueden manifestarse las condiciones geomorfológicas en que se formaron.

Las lateritas son yacimientos originados por la meteorización de las rocas con alto contenido de hierro en condiciones tropicales. Los estudios realizados en-Cuba han demostrado la estrecha relación del espesor y el perfil de las lateritas con el relieve, puesto que este determinará en gran medida la velocidad del flujo de las aguas subterráneas y superficiales, así como la intensidad de los procesos denudativos.

Esta dependencia de las lateritas con el reliche determinan que en los últimos años haya aumentado rápidamente el interés por la aplicación de los métodos geomorfológicos para la localización de las áreas perspectivas para la búsqueda de lateritas.

La búsqueda de bauxitas puede orientarse también en gran medida per criterios geomorfológicos, ejemplo, las bauxitas de Jamaica están localizadas en colinas de un

peniplano cársico y son fácilmente localizables por las fotos aéreas.

En gran medida la búsqueda de yacimientos de placer se realiza por métodos geomorfológicos. Estos yacimientos son depósitos detríticos, ricos en minerales pesados que se diferencian y concentran mediante el transporte. Una parte considerable de los yacimientos de oro, platino, diamantes, etc., tiene este origen. Los yacimientos de placeres fluviales son los más importantes de este grupo en su búsqueda es de fundamental importancia la detección de antiguos cauces fluviales, valles enterrados y terrazas. Todos ellos pueden distinguirse con bastante seguridad por medio del estudio de las fotos aéreas.

Los yacimientos minerales de origen endógeno pueden reflejarse con el relieve y los métodos geomorfológicos son entonces de gran utilidad en su localización, por ejemplo, muchos yacimientos hidrotermales con gran contenido de cuarzo son múy resistentes a la erosión y forman elevaciones por sobre las rocas de cajas menos resistentes. Existe el caso contrario cuando el yacimiento es rico en calcita o yeso, manifestándose de forma negativa en el relieve.

Hay yacimientos minerales ciegos que pueden detectarse por métodos geomorfológicos. Los yacimientos de sulfuros y carbonates sufren un proceso de oxidación por la
acción de las aguas subterráneas. Durante esta son lixiviados volúmenes considerables de materiales y la mena
pierde en volumen por lo que la masa de rocas situadas
arriba puede ser sustituida y termina por subsidir, originando una depresión. De esta manera en las zonas de
mineralización hidrotermal, la presencia de pequeñas depresiones puede indicar la yacencia en profundidad de
cuerpos minerales.

Las investigaciones geomorfológicas son más bien de mucha utilidad en la búsqueda del petróleo. El estudio cuidadeso de las fotos aéreas y mapas topográficos pueden dar numerosos datos de interés sobre la estructura del área investigada y definir las zonas más perspectivas para la presencia de trampas estructurales. Los mapas morfométricos servirán para la detección de estructuras jóvenes en zonas de plataforma.

En las investigaciones ingeniero-geológicas e hidrogeológicas la geomorfología puede ser utilizada de diversas maneras.

En la construcción de carreteras es necesario prestar una considerable atención al relieve, en especial, aquellos trazados en regiones montañesas en les que los deslizamientos constituyen grandes problemas. Cuando una caretera conta la ladera rompe la pendiente natural formada por los procesos de denudación y se aceleran por este motivo los movimientos gravitacionales e incluso pueden reactivarse antiguos deslizamientos que habían alcanzado el estado de reposo. Por todo lo anterior al construir una carretera en un área montañosa debe prestársele especial atención al estudio de los taludes para elegir algunos trazados de carretera menos peliaresas y evitar y prevenir al máximo los movimientos gravitacionales.

Igualmente debe tomarse precauciones especiales en la construcción de carreteras en zonas gársicas.

Durante las épocas de lluvia, muchas colinas se rellenam de agua y forman lagunas intermitentes. Si este no se tiene en cuento, algunos de los sectores de la carretera planeada pueden resultar imundados e inutilizados en épocas de lluvia. Al construir puentes en zonas cársicas es necesario tener en cuento la posibilidad de cavernos a poco profundidad en el subsuelo.

elección de sitios para presas hay que toner

especial atención en la posibilidad de existencia de carso en la zona del vaso de la presa, puesto que, en estos casos la permeabilidad del terreno aumenta enormemente y las pérdidas de agua pueden ser muy grandes.

En regiones cársicas los estudios geomorfológicos pueden ser de ayuda en las investigaciones hidrogeológicas. El estudio del relieve nos permitirá juzgár cuan avanzado está el carso en ella y preverá el carácter del movimiento de las aguas. Subterraneas.

En regiones de carso incipiente este movimiento no diferirá sustancialmente de aquel de las regiones no cársicas, es decir se realizará a través de poros y grietas en su mayor parte, en tanto que cuando el carso está bien desarrollado una gran parte del agua se movera por caber-

Ambas situaciones plantean métodos diferentes para nas. las investigaciones hidrogeológicas.

Los campos antes enunciados no son los únicos en los que las investigaciones geomorfológicas son de valor práctico. Estos estudios correctamente realizades son de gran utilidad en las esferas aplicada. de los estudios gológicos. En realidad en los últimos años so da una importancia creciente a las investigaciones geomorfológicas dentre del complejo de estudios geológicos en los trabajos aplicados.

CAPÍTULO 13 GEOLOGÍA DEL CUATERNARIO

En los últimos años el levantamiento de los sedimentos cuaternarios ha adquirido úna gran importancia, por lo necesario de su estudio desde el punto de vista ingenieril así como por los valiosos yacimientos minerales que contienen.

La geología del Cuaternario se encarga de los sedimentos acumulados durante ese intervalo, estudiando su distribución, composición y génesis.

Las capas cuaternarias tienen una serie de peculiaridades que las diferencian de los sedimentos más antiguos y esto hace que los métodos para su estudio sean distintos en cierta medida. Los depósitos cuaternarios tienen una distribución universal cubriendo casi toda la superficie. Su espesor es habitualmente pequeño en comparación con los depósitos más antiguos, son generalmente sedimentos continentales y presentan pocos cambios diagenéticos.

Por último podemos decir que la acumulación de depósitos cuaternarios está intimamente relacionada con el relieve actual y de aquí que la geomorfología tenga gran importancia en la geología del Cuaternario.

Clasificación de los depósitos cuaternarios

La clasificación de los depósitos cuaternarios se hace en base a su génesis. El geólogo soviético A.P. Pavlov denominó como tipo genético de sedimento "Al conjunto de depósitos formados como resultado del trabajo de un determinado agente geológico. Así por ejemplo, el complejo may variado de sedimentos acumulados por los ríos en su cauce llamura de inundación, etc, de acuerdo a esta Cofinición, el tipo genético aluvial.

La clasificación de los depósitos cuaternarios por _ cri.avi a genéticos puede llevarse a cabo con mucha más antiguedad, pues en numerosas ocasiones el proceso formaor opera en la actualidad, no dejando dudas respecto a la génesis.

Los depósitos cuaternarios pueden clasificarse de la siguiente manera:

eluviales

gravitacionales

coluviales

deluviales

proluviales

aluviales

aluviales

lacustres

de cavernas

de aguas subterraneas

de manantiales

glaciales

glaciales

fluvioglaciales

lacustreglaciales

dimas

eólicos

loess

marinos -8)

Todos ellos han sido estudiados en geología general y estratigrafía. Aquí sólo nos detendremos a estudiar brevemente algunos tipos los cuales no se vieron en el curso de estratigrafía por ser muy raros en las capas pre cuaternarias.

Depósitos eluviales. Son los productos de la meteori-

zación que permanecen in situ. Su distribución es muy amplia y cubren gran parte de la superficie de los continentes. Los geólogos soviéticos distinguen dos variedades de estos.

- 1) Cortezas de meteorización, formadas por los fragmentos de minerales y rocas originados por la meteorización.
- 2) Suelos que es cuando el material originado por la meteorización es enriquecido por materia orgánica y se encuentra en la parte superior del perfil.

Los depósitos eluviales se encuentran en áreas de pequeñas pendientes, donde los movimientos de arrastre de suelos y la erosión de las aguas salvajes es poco significativa.

Depósitos coluviales. Están compuestos por los productos de la meteorización que han sido trasladado por las pendientes debido a la acción de la fuerza de la gravedad. En ellos se incluyen los depósitos de los arrastres de suelos, deslizamientos y avalanchas. Pertenecen también a este grupo los depósitos de las aguas salvajes (deluviales).

Los depósitos coluviales se acumulan en las pendientes sobre todo en su base, en forma de capa o manto. Si las pendientes son abruptas el espesor de los sedimentos deluviales puede ser considerable (hasta varias decenas de metros). Los depósitos de este tipo habitualmente se componen de cantos angulosos mal seleccionados. A menudo se observa en ellos una cierta estratificación no muy marcada.

Depózitos de las aguas subterráneas. Comprendiendo las acumulaciones de las cavernas (estalactitas, estalagmitas, etc. por un lado y por otro los de manantiales, como por ejemplo el travertino de los manantialos de

mentos fluviales alcanzan varias decenas de metros de espesor. Otra región importante es el SE de Pinar del Río donde se ha llegado a perforar 75 m de aluviones.

Las turbas están muy ampliamente distribuidas en Cuba, cubriendo áreas considerables a lo largo de la costa en el Sur de La Habana y Camaguey, en el noroeste de Matanzas, etc. El área más importante cubierta por ellas es la Ciénaga de Zapata, cuyos sedimentos son muy jóvenes según los datos radiométricos que indican para ellos una edad Holeoceno.

Las lateritas forman un importante grupo de depósitos cuaternarios cuya geología es mucho más compleja que la admitida en general hasta el momento. Las investigaciones recientes han demostrado que las lateritas cubanas han sufrido procesos de transporte y redeposición, a veces incluso en condiciones marinas. Estos hechos requieren de un estudio cuidadoso ya que los mismos, sin dudas repercuten en el cálculo de reservas.

CAPÍTULO 14 MÉTODOS DE INVESTIGACIÓN DE LOS SEDIMEN-TOS CUATERNARIOS

El método fundamental de estudio de los depósitos cuaternarios consiste en el mapeo de los diferentes tipos genéticos de sedimentos. Para ello es necesario estudiar las texturas, estructuras, composición, restos orgánicos, propiedades físicas y relación de los sedimentos cuaternarios con las formas de relieve, actuales o enterradas.

El análisis granulométrico de los sedimentos permite evaluar la dinámica del medio que los transportó reflejada en la selección de los granos, así como por su forma y redondeamiento.

Es necesario prestar una gran atención a la composición de los clastos. En condiciones de campo esto puede realizarse visualmente en el caso de depósitos de gravas o materiales más gruesos. En el laboratorio se debe estudiar bajo el microscópico binocular cada fracción. Muy importante desde el punto de vista de la correlación de los sedimentos es la composición de minerales pesados. Los diferentes complejos de minerales pesados existentes en sedimentos de distintas edades son una valiosa ayuda en la correlación, en especial en los depósitos fluviales. Además, los minerales pesados dan valiosas indicaciones sobre la composición de las regiones de suministros.

En la determinación de las condiciones de sedimentación tiene una gran importancia el estudio de las texturas, en especial el estudio de la orientación de los cantos en los conglomerados y el tipo de estratificación.

La determinación de la edad de los sedimentos cuaternarios se hace en base a datos geomorfológicos y estratigráficos. Entre estos últimos son de especial importancia los restos fósiles. En la datación de los sedimentos cuaternarios tienen gran valor los restos de mamíferos pues este grupo es relativamente abundante y además, ha evolucionado con mucha rapidez. El concepto de restos de mamíferos, así como las asociaciones de polen y esporas de
plantas son de gran valor para la datación de los depósitos en las regiones periféricas a áreas glaciadas. En Cuba, donde este fenómeno no se-desarrolló; el valor de los
fósiles es más limitado y no pueden utilizarse para correlaciones finas hasta el momento. Es posible que en el futuro los estudios polinalógicos (de polen y esporas) sean
de mucha utilidad en la correlación de los sedimentos cuaternarios en áreas afectadas por las glaciaciones. Esto se
debe a que las fluctuaciones climáticas pleistocénicas
provocan cambios en la composición de la flora continental y esto debe causar cambios en la composición de las
esporas y polen que se acumulan con los sedimentos.

Con el estudio de los sedimentos cuaternarios tienen un gran valor los métodos geofísicos, en particular cuando sus resultados se combinan con los de perforaciones. Es necesario realizar investigaciones geofísicas cerca de las perforaciones para determinar con precisión las características del corte geológico.

Los métodos geofísicos más empleados en los estudios de los sedimentos cuaternarios son el perfilaje eléctrico, el sondeo eléctrico vertical y el perfilaje sísmico. Los métodos geofísicos contribuyen a la solución de los siguientes problemas:

- a) determinación del espesor de los sedimentos cuaternarios;
- b) determinación del relieve por debajo de los sedimentos cuaternarios;
- c) subdivisión litólogo-estratigráfica de los sedimentos.

Todos los materiales y datos recogidos en el campo son procesados durante el período de gabinete. Posteriormente

se confecciona el informe y los materiales gráficos correspondientes, así como el mapeo geológico de los sedimentos cuaternarios. El contenido del informe depende del
fin con el cual se realiza el levantamiento de los sedimentos cuaternarios. Si se trata de la búsqueda y exploración de yacimientos minerales el texto del informe debe
constar de los siguientes capítulos.

- I Introducción
- II Investigaciones preliminares
- III Metodología de la investigación
- IV Rasgos físico-geográficos de la región
- V Geología del área
- VI Geomorfología
- VII Yacimientos minerales
- VIII Regularidades de la distribución de los yacimientos minerales
 - IX Posibilidades de la región
 - X Conclusiones

Si la investigación tiene un carácter ingeniero geológico e hidrogeológico los capítulos VII, VIII y IX se cambian por temas dedicados al estudio y valoración de las propiedades ingeniero geológicas e hidrogeológicas de los distintos tipos de sedimentos.

El mapa de los sedimentos cuaternarios resume en forma gráfica la interpretación de la geología cuaternaria
de una región dada y constituye, junto con el informe el
resultado fundamental de la investigación. En estos mapas
se acostumbra a diferenciar a los tipos genéticos de sedimentos con distintos colores y los subtipos en que se
divide cada uno por medio de símbolos superpuestos. Por
ejemplo los sedimentos fluviales pueden señalarse de verde, superponiéndose distintos símbolos si estos son de
cauce, llanura aluvial, etc.

En nuestro país no existe ningún acuerdo sobre la sub-

división del cuaternario (excepto en sus dos pisos, Fleistoceno y Holoceno), por tanto tampoco existe ningún concenso sobre la representación de las edades de los sedimentos en los mapas. En la URSS donde si existe una subdivisión ampliamente reconocida de los depósitos cuaternarios se utiliza una determinada simbología para representar las edades de los sedimentos cuaternarios.

De esta forma concluye la parte del curso dedicada a la geología del cuaternario. Esta es una rama de la geología de indiscutible importancia que en Cuba está casi totalmente sin desarrollar.

BIBLIOGRAFÍA

- 1. G. GORSHKOV, A. YAKUSHOVA.: 2a. Edición Editorial, MIR, Moscú.
- 2. V.E. JAIN.: Parte I. Editorial MIR-MOSCú. Geotectónica General.
- 3. Conferencias de Geomorfología del Departamento de Ciencias Geológicas Básicas.

SÍNTESIS DEL CONTENIDO

MANUAL DE GEOMORFOLOGÍA

ALINA RODRÍGUEZ INFANTE

El presente manual de Geomorfología recoge de forma sintética la relación existente entre los diferentes procesos geológicos, ya sean endógenos o exógenos y el relieve que conforma la superficie de los continentes, fundementalmente de aquellas regiones de climas tropicales
o subtropicales.

En el desarrollo del mismo, conjuntamente con el estudio y aplicación de los principios básicos de la geomorfología, se exponen los principales criterios que permiten identificar las estructuras geológicas que determinan las formas topográficas.

El material está dirigido fundamentalmente a los estudiantes de 3er. año de la especialidad de Geología.