

Especialidad - Minas

Trabajo de Diploma en opción al título de Ingeniero en Minas

Perspectiva de empleo de las tobas vítreas como áridos ligeros, localidad de Flores. Municipio de Banes.

Autor: Dervis Ricardo Solis

Curso: 2018-2019

"Año 61 de la Revolución"

Especialidad - Minas

Trabajo de Diploma en opción al título de Ingeniero en Minas

Perspectiva de empleo de las tobas vítreas como áridos ligeros, localidad de Flores. Municipio de Banes.

Autor: Dervis Ricardo Solis

Tutores: Dr.C Carlos Alberto Leyva Rodríguez

MsC. Ismael Terrero Aguirre

Curso: 2018-2019

"Año 61 de la Revolución"

DECLARACIÓN DE AUTORIDAD

Yo: Dervis Ricardo Solis

Autor de este Trabajo de Diploma y el tutor <u>Dr.C Carlos Alberto Leyva Rodríguez y MsC. Ismael Terrero Aguirre</u> certificamos la propiedad intelectual a favor de la Universidad de Moa "Dr. Antonio Núñez Jiménez", hacer uso del mismo en la finalidad que estime conveniente.

Doi vio itiodi do doile
Diplomante
Dr. C Carlos Alberto Leyva Rodríguez
Tutor
Ms C. Ismael Terrero Aguirre
Tutor

Dervis Ricardo Solis

DEDICATORIA

Dedico este trabajo de diploma a mis padres y a mi hermano, porque estuvieron en los momentos más difíciles de mi vida brindándome amor y apoyo durante toda mi vida.

A mí novia por darme su amor, comprensión y cariño.

A mís amigos de la universidad, el barrio e infancia que de una manera u otra siempre han estado a mi lado apoyándome en los momentos buenos como en los malos.

A toda mi familia porque de una forma u otra forman parte de mi vida.

A todos mís amigos por brindarme en cada momento su apoyo.

AGRADECIMIENTOS

Este trabajo de diploma es el resultado de los cinco años más difíciles de mí vida y del esfuerzo y dedicación de varias personas. Quisiera agradecer a todas las personas que siempre me apoyaron durante estos cincos años.

A mí madre y mí padre porque siempre están cuando los necesité y sín su ayuda durante toda mí vída no hubíese podído alcanzar este sueño.

A mi hermano para que este trabajo le sirva de inspiración y ejemplo en la continuidad de sus estudios.

A mís abuelos, mís tíos y tías, a mís primos porque de una forma u otra forman parte de mí.

A mís tutores el Dr. C Carlos Leyva Rodríguez y el Ms C. Ismael Terrero Aguirre porque sin su apoyo no hubiese sido posible la realización de este trabajo.

A los profesores del Departamento de Minería.

A todos mís amigos que siempre me han brindado su apoyo, su amor y cariño.

A mís compañeros de aula, que me extendieron su mano cuando más lo necesité. Al claustro de profesores del Departamento de Minería del ISMM por su entrega y dedicación en cada una de las clases impartidas en el transcurso de todos estos años.

A las personas hoy presentes.

A todos los que contribuyeron para poder realizar este trabajo de diploma. A la Revolución Cubana, y a su líder indiscutible Fidel Castro Ruz por darme la oportunidad de formarme como una profesional competente.

Les pido disculpa a las personas que no mencioné pero quiero que sepan que les agradezco a todas las personas que me apoyaron incondicionalmente.

PENSAMIENTO

"La alegría es inmensa y sin embargo, queda mucho por hacer todavía. No nos engañemos creyendo que en lo adelante todo será fácil; quizás en lo adelante todo será más difícil."

Fidel Castro Ruz

RESUMEN

En el presente trabajo se presenta la caracterización química y mineralógica de las tobas vítreas del yacimiento de la cooperativa de Flores municipio Banes. Se evaluaron las propiedades físico-mecánica de los productos de estas rocas al ser empleadas como árido, sustituto del árido grueso (granito 3/8) en la fabricación de bloques huecos de hormigón. A estos bloques se le realizaron ensayos donde se comprobó que cumplían con lo establecido por la norma (NC 247: 2010 — Bloques huecos de hormigón — Especificaciones). Se demostró mediante el ensayo de resistencia a la compresión realizado en el laboratorio de Holguín (ENIA), que la resistencia de los bloques cumple con lo establecido en la norma, a pesar de ser un material no tradicional para estos usos. Se realizaron además ensayos de absorción, que comparados con los patrones duplica el porciento de estos, aunque es normal tratándose de materiales porosos.

Palabras Claves

Árido, bloque hueco de hormigón, árido ligero, tobas vítreas.

ABSTRACT

The present work presents the chemical and mineralogical characterization of the glassy tuffs of the cooperative of Flores municipality Banes. The physical-mechanical properties of the products of these rocks were evaluated when being used as arid, substitute of the coarse aggregate (granite 3/8) in the manufacture of hollow blocks of concrete. These blocks were tested where they were found to comply with the standard (NC 247: 2010 - Concrete hollow blocks Specifications). It was demonstrated by the resistance to the compression test carried out in the laboratory the Holguín (ENIA), that the resistance of the blocks meets the established standard, despite being a nontraditional material for these uses. Absorption tests were carried out, which compared to the standards duplicate the percentage of these, although it is normal for porous materials

Key Words:

Arid, hollow block of concrete, light arid, tuffs vitreous.

ÍNDICE

NTRODUCCIÓN1
Capítulo 1: MARCO TEÓRICO4
1.1. Estado del arte4
1.2. Ubicación geográfica de Banes
1.2.1. Ubicación geográfica del área de estudio
1.2.2 Clima9
1.2.3 Relieve
1.2.4 Vegetación10
1.2.5 Características económicas10
1.3. Generalidades de las tobas vítreas o vidrio volcánico10
1.4. Caracterización química de las tobas vítreas del yacimiento de Flores
municipio Banes11
1.5. Caracterización mineralógica de las tobas vítreas del yacimiento de Flores
municipio Banes12
1.6. Investigaciones sobre los usos de las tobas vítreas o vidrio volcánico en la
industria nacional13
1.7. Áridos o agregados15
1.8. Principales tipos de áridos15
1.8.1. Los áridos en el hormigón16

1.9. Hormigón Liviano	17
1.9.1. Uso y Aplicaciones	18
1.10. Bloques huecos de hormigón. Generalidades	20
Conclusiones Parciales	21
apítulo 2: MATERIALES Y MÉTODOS	
2.1. Recopilación y revisión de la información existente	22
2.1.1 Diseño experimental	22
2.2.1. Toma de la materia prima	23
2.2.2. Preparación de la materia prima	23
2.3. Caracterización de las materias primas para la producción de lo	s bloques
huecos de hormigón	23
2.4. Fabricación de bloques huecos de hormigón	23
2.5. Descripción de los ensayos realizados a los bloques huecos de horm	igón25
2.5.1. Determinación de las dimensiones	25
2.5.2. Resistencia a compresión	26
2.5.3. Absorción	28
2.5.4. Determinación de la disminución de masa	29
Conclusiones parciales	30
apítulo 3: ANÁLISIS Y DISCUCIÓN DE LOS RESULTADOS	31
3.1. Análisis de los resultados obtenidos en bloques huecos de hormigón.	31

ANEXOS	
BIBLIOGRAFÍA	
RECOMENDACIÓN	43
CONCLUSIONES	42
Conclusiones parciales	40
3.2. Valoración socioeconómica y ambiental	40
3.1.4. Resultados de la determinación de disminución de masa	38
3.1.3. Análisis de los resultados del ensayo de absorción	36
3.1.2. Resultados del ensayo de resistencia a compresión	33
	31
3.1.1. Resultados de las mediciones realizadas a los bloques hue	cos de hormigón

ÍNDICE DE TABLAS

Tabla 1.1 Composición química de la muestra de tobas empleadas12
Tabla 1.2 Características mineralógicas de los materiales tobáceos estudiados12
Tabla 1.3 Resultado de los análisis de laboratorio realizados a los filtros con ambos
filtrantes
Tabla 2.1 Dosificación utilizada para la fabricación de bloques huecos de hormigón
Tabla 2.2 Plan establecido para determinar las dimensiones de fabricación de los
bloques
Tabla 3.1 Resultados de las mediciones realizadas a los bloques patrones31
Tabla 3.2 Dimensiones principales y tolerancias admisibles
Tabla 3.3 Resultados de las mediciones realizadas a los bloques de toba vítrea32
Tabla 3.4 Comportamiento de la resistencia a compresión de los bloques patrones a
la edad de 7 días33
Tabla 3.5 Comportamiento de la resistencia a compresión de los bloques de toba
vítrea a la edad de 7 días34
Tabla 3.6 Comportamiento de la resistencia a compresión de los bloques patrones a
la edad de 28 días34
Tabla 3.7 Comportamiento de la resistencia a compresión de los bloques de toba
vítrea a la edad de 28 días35
Tabla 3.8 Absorción de los bloques huecos de hormigón patrón36
Tabla 3.9 Absorción de los bloques huecos de hormigón con la toba vítrea como
grava (granito 3/8)37

Tabla 3.1	Determinació	n de	disminución	de	masa	de	los	bloques	en	el	medic
ambiente.											38
Tabla 3.11	Determinación	de d	isminución de	ma	sa de l	los k	oloqu	ues en es	tado	o se	eco39

ÍNDICE DE FIGURAS

Figura 1.1 Mapa de ubicación geográfica de Banes.	.8
igura 1.2 Mapa de ubicación geográfica de Flores.	.9
Figura 3.1 Promedio obtenido del ensayo de la resistencia a la compresión realizad	ok
los bloques	36
Figura 3.2 Promedio obtenido del ensayo de absorción realizado a los bloques	38
Figura 3.3 Promedio del porciento disminución de la masa de los bloques de tob	oa
ítrea con respecto a los patrones	99

INTRODUCCIÓN.

En la actualidad la situación de la vivienda es un problema que crece gradualmente a medida que pasan los años, por el deterioro constante de las existentes y el azote de fenómenos naturales. Debido a la notable escasez de materiales de construcción y el poco desarrollo que ahí en el país en este ámbito.

Con el objetivo de darle solución a la problemática antes expuesta, se están realizando diferentes investigaciones e inversiones por parte del estado cubano, donde la utilización de las tobas vítreas de la región Flores municipio Banes, como árido ligero, contribuirá desde una perspectiva local a la solución de problemas nacionales, ya que los áridos son un material insustituible para la sociedad actual porque estos se emplean en cantidades muy importantes en todos los ámbitos de la construcción, ya sea en vías de comunicación, obras de infraestructura, equipamientos, vivienda, industria química, etc.

El árido ligero es un material física y químicamente neutro, que no desprende gases ni malos olores, no se pudre y no es atacable por parásitos, hongos o roedores. No le afectan las substancias químicas y es altamente resistente a las heladas y a los cambios bruscos de temperaturas.

Debido a que su principal propiedad es la ligereza, sus aplicaciones más directas se hallan en la construcción para la fabricación de materiales aislantes: paneles, bloques, bovedillas, etc. Una buena aplicación consiste en la rehabilitación de antiguas cubiertas de fibrocemento, para lo cual se prepara un hormigón con árido ligero en lugar del denso convencional, logrando dos objetivos: Conseguir un buen aislamiento térmico y eliminar el problema medioambiental que supone al fibrocemento en climas calurosos y secos.

Desde el punto de vista de la seguridad, los hormigones fabricados con áridos ligeros conservan un 80% de la resistencia mecánica a temperaturas superiores a 600°C. A este factor hay que sumarle un mayor poder aislante, lo cual mejora todavía más sus cualidades frente al fuego.

La densidad del árido ligero oscila entre la mitad y un tercio de la densidad del árido natural, lo cual supone que el nuevo hormigón sea mucho más liviano y la estructura de la edificación más ligera y barata. Paralelamente, su gran porosidad interna supone un gran poder de aislamiento térmico y acústico.

Situación Problémica

Desconocimiento de las propiedades de las tobas vítreas del yacimiento de la región de Flores municipio Banes, para su uso como árido ligero.

Problema

El insuficiente conocimiento de las propiedades de las tobas vítreas del yacimiento de la región de Flores municipio Banes.

Objeto de estudio

Las propiedades de las tobas vítreas como árido ligero.

Campo de acción

Tobas vítreas de la región de Flores municipio Banes.

Objetivo general

Determinar las propiedades físico-mecánicas de las tobas vítreas al ser empleadas como árido ligero, en la construcción de bloques huecos de hormigón.

Hipótesis

Si se determinan las propiedades físico-mecánicas de los bloques con el empleo de tobas vítreas como árido ligero, es posible su utilización en la industria de materiales locales.

Objetivos específicos

Caracterizar química y mineralógicamente las tobas vítreas del yacimiento de la región de Flores municipio Banes. Determinar las propiedades físico-mecánicas de los bloques huecos de hormigón con el empleo de tobas vítreas como árido ligero

Tareas de la investigación

- Análisis bibliográfico de trabajos relacionados con el objeto de la investigación.
- Toma y elaboración de muestras.
- Preparación mecánica de las materias primas.
- Fabricación de los bloques huecos de hormigón.
- Realización de los ensayos de los bloques para determinar las propiedades.

Métodos empíricos

Un punto muy importante para desarrollar una investigación es la observación:

También, la compilación es un método empírico esencial: La compilación permite reunir y sistematizar información mediante la revisión de fuentes bibliográficas, orales, digitales o de otro tipo.

Métodos teóricos

Entre los métodos teóricos se encuentran los métodos siguientes:

- Histórico lógico: para analizar la trayectoria tecnológica del yacimiento.
- Hipotético deductivo: para la formulación de una hipótesis y luego, a partir de inferencias lógicas-deductivas, se arriba a conclusiones particulares que posteriormente se pueden comprobar.

Capítulo 1: MARCO TEÓRICO

En este capítulo se realiza un análisis sobre los diferentes aspectos que se encuentran relacionados con los temas abordados en la bibliografía consultada con el objetivo de disponer de los elementos básicos para realizar el presente trabajo. En el cual se expone el estado del arte, ubicación geográfica del área de estudio, posteriormente las propiedades químicas y mineralógicas de las tobas vítreas, entre otros temas que brindan conocimientos básicos relacionados con el trabajo.

1.1. Estado del arte

Según las investigaciones realizadas, se constató lo siguiente:

López, L, M, en el 2006, mostró resultados preliminares sobre las potencialidades como áridos ligeros y puzolanas del yacimiento El Picado, estos resultados fueron preliminares, al no contar el laboratorio donde se efectuaron los ensayos con las debidas certificaciones de calidad, lo cual no permite homologar sus resultados, dando lugar a la necesidad de efectuar nuevas investigaciones.

De Armas, J, (2008), en su trabajo "Reevaluación de las tobas vítreas del yacimiento Sagua de Tánamo (El Picado) como puzolanas naturales" demostró que la dosificación de 15 a 30 % de tobas vítreas avalan su puzolanidad y su uso como aditivo al cemento y los hormigones, sin embargo no describe la granulometría adecuada para el mezclado, ni el uso de tobas como árido para la fabricación de hormigones y morteros.

Muxlanga. J.R (2009), en su trabajo sobre la evaluación de las tobas vítreas del yacimiento de Sagua de Tánamo para su utilización como árido y puzolana natural en la construcción, donde se aborda que las tobas vítreas tienen gran utilización a nivel mundial al tener diferentes aplicaciones, se realizaron diferentes ensayos de resistencia y de granulometría, se utiliza un triturador de mandíbula para disminuir el tamaño del material utilizado y también se utiliza un molino de bolas con el objetivo de disminuir aún más al obtener resultados favorables como puzolana, pero no la llegó a utilizarlo como árido.

Cabrera. M. R (2010), realiza una evaluación de las tobas vítreas de los yacimientos de la provincia de Holguín, para ver si se pueden utilizar como 7 puzolana natural en los materiales de la construcción, donde el material que se analiza, se le realizan ensayos para determinar la resistencia a la flexotracción y a la compresión de morteros y se comprueba que estos morteros superan la resistencia de los morteros de albañilería y las tobas influyen positivamente en la resistencia mecánica de los morteros. Donde se debería haber evaluado también los materiales a un mayor tiempo de fraguado y no se separan las fases de la montmorillonita de la arcilla en las tobas vitroclásticas.

Almenares R.S (2011), determinó las propiedades puzolánicas de los materiales tobáceos de la región de Holguín, con perspectivas a ser utilizadas como puzolanas naturales donde se incluyó el yacimiento Sagua de Tanamo. Determino que al añadir un 15 y un 30 % en peso, de estos materiales por cemento, y realizar una serie de análisis para determinar la composición química y mineralógica de estos materiales, obteniendo como resultado que al realizar la sustitución de los materiales tobáceos por cemento, los morteros obtenidos cuentan con las resistencia suficiente para ser utilizados en la albañilería, pero no utiliza ningún método para separar los granos de montmorillonita de otro tipo de arcilla que se encuentra contenida en las tobas vítreas, como un factor planteado por el autor que limita la actividad de los referidos materiales.

Pérez, Y. M. (2011), en su trabajo determina los valores de las funciones de fragmentación para el proceso de molienda de las tobas vítreas del yacimiento de Sagua de Tánamo, la investigación se realiza a escala de laboratorio, donde se encuentra la composición granulométrica del material por medio de análisis de tamiz por vía seco húmeda y se realiza el cálculo de las bolas que garanticen el rendimiento máximo del molino, donde la característica granulométrica del material se ajusta al modelo Rozin – Rammler, con relación de 0,94 y la cinética sigue las regularidades de los materiales rocosos y la función de selección se incrementa con el aumento de las clases hasta un tamaño de partículas de 0,6 mm, momento en el cual comienza a decrecer, pero se debió investigar sobre el efecto de las

bolas en las funciones de fracturas a escala de banco y de laboratorio, no se realizó la separación de la montmorillonita de la arcilla, en las tobas zeolitizadas del yacimiento Sagua de Tánamo.

Montero F. (2012), realiza un estudio sobre la separación de la montmorillonita de las tobas vítreas donde demuestra que la separación a través del método de elutriación no es eficiente, dado que los contenidos de AI, y Mg que representan a los granos de la montmorillonita y las rocas acompañantes de las tobas vítreas en los productos separados se concentran en muy poca proporción.

Reyes R. (2013), demostró que el 15 % de adición de las tobas vítreas como aditivo en la producción de cerámica roja para la industria de materiales es con el que se tiene mejores resultado. Lo cual permitió elevar sus propiedades en cuanto a contracción lineal (0,160 %), resistencia a la compresión (13,059 MPa) y pérdida de peso (49,884 %).

Peña R. (2013), demostró que el 15 % de adición de las tobas vítreas como aditivo en la producción de cerámica roja para la industria de materiales es con el que se tiene mejores resultado. Lo cual permitió elevar sus propiedades en cuanto a contracción lineal (0,160 %), resistencia a la compresión (13,059 MPa) y pérdida de peso (49,884 %)

Martínez R. A (2014), en su trabajo "Tobas vítreas de Sagua de Tánamo como aditivo en la producción de objetos de cerámica roja" llegó a la conclusión que el secado de los objetos de cerámica roja confeccionados en el centro de producción Industrias Locales Moa a partir de la implementación de las tobas vítreas de Sagua de Tánamo tuvo una disminución en el tiempo de acuerdo a los porcentajes de aditivo añadido, lo cual para un 10 % bajó de 7 a 5 días, y para un 20 % 7 disminuyó de 7 a 3 días respectivamente. La adición de las tobas vítreas a la mezcla evitó el agrietamiento de las piezas dándole a estas un mayor brillo.

Aguilar R.A (2014), en su trabajo ``Tobas vítreas de Sagua de Tánamo como aditivo en la producción de objetos de cerámica roja´ llego a la conclusión que el

secado de los objetos de cerámica roja confeccionados en el centro de producción Industrias Locales Moa a partir de la implementación de las tobas vítreas de Sagua de Tánamo tuvo una disminución en el tiempo de acuerdo a los porcentajes de aditivo añadido, lo cual para un 10 % bajó de 7 a 5 días, y para un 20 % disminuyó de 7 a 3 días respectivamente. La adición de las tobas vítreas a la mezcla evitó el agrietamiento de las piezas dándole a estas un mayor brillo.

Matos D. (2016), en su trabajo ``Evaluación de la reactividad puzolánica de las tobas vítreas calcinadas del yacimiento el Picado'' llegó a la conclusión que las tobas vítreas del yacimiento El Picado poseen un contenido total de SiO2, Al2O3 y Fe2O3 superior al 70 %, la cual corresponde con la exigida para su utilización como puzolana. Las fases con mayor potencial de activación son las arcillosas del grupo de las esmectitas y algunos feldespatos con elevado grado de defectos en su estructura cristalina.

Calzada D. (2016), en su trabajo ``Evaluación de la reactividad puzolánica de las tobas vítreas calcinadas del yacimiento el Picao ´ llego a la conclusión que las tobas vítreas del yacimiento El Picao poseen un contenido total de SiO2, Al2O3 y Fe2O3 superior al 70 %, la cual corresponde con la exigida para su utilización como puzolana. Las fases con mayor potencial de activación son las arcillosas del grupo de las esmectitas y algunos feldespatos con elevado grado de defectos en su estructura cristalina.

Tamayo N. (2016), realizó una investigación sobre la influencia de la preparación de las tobas vítreas de la región el Picao sobre la reactividad puzolánica donde concluyo que el comportamiento físico mecánico de las tobas calcinadas muestra que a edades tempranas la mejor resistencia lo tiene el material calcinado a 700 °C, influenciado por las características morfológicas del material tobáceo activado mientras a edades superiores la temperatura de máxima resistencia es 850 °C, lo cual se relaciona con la activación de las fases potencialmente activables.

1.2. Ubicación geográfica de Banes

Geográficamente Banes se encuentra ubicada hacia la parte norteoriental de la Isla de Cuba, en la provincia de Holguín (Figura 1.1).

Limitada por las siguientes coordenadas Lambert:

x: 586639.57838397y: 260716.11771129.x: 638622.24156827y: 261063.68591766.x: 638926.11164424y: 224163.79823788.x: 586829.51695436y: 223815.36002348.

El municipio limita al norte con el Océano Atlántico, al este con el Océano Atlántico y el municipio de Antilla, al sur con el de Mayarí y al oeste con el municipio de Báguano. Del área de estudio se hará más énfasis al sector que corresponde con el municipio Banes (Consuegra 2005), de este solo se aprecia la parte sur como se ve en la Figura 1.1.

Figura 1.1 Mapa de ubicación geográfica de Banes

1.2.1. Ubicación geográfica del área de estudio

El Consejo Popular de Flores está situado a 14 Km de la cabecera municipal teniendo una extensión territorial de 81 km. Limita al norte con el Consejo Popular de Retrete, al este con el Consejo Popular de Betancourt al sur con el Consejo

Popular de Los Pinos y al oeste con el Consejo Popular de Cortadera (Consuegra 2005). Como se muestra en la (figura 1.2).

Figura 1.2 Mapa de ubicación geográfica de Flores

1.2.2 Clima

El clima de la región es cálido y seco (Estación meteorológica de Lucrecia, 2004). Se reporta una elevada temperatura media con el valor anual de 26,5 °C, situación originada, como es típico en las zonas costeras o por la influencia de clima costero, en los elevados niveles de las temperaturas mínimas en las madrugadas. De forma general las temperaturas se estabilizan en valores altos todo el año pues incluso las mínimas medias, con marcas en julio y agosto de 25,9 °C y 25,6 °C respectivamente. En invierno, a pesar de la influencia de altas presiones continentales, pueden alcanzar índices de hasta 21,8 °C (Consuegra, 2005).

1.2.3 Relieve

En el municipio Banes predominan las llanuras y las elevaciones de poca altura. Las tierras del litoral son onduladas, debido a la abundancia de colinas y farallones de sus lomas, que pertenecen al grupo orográfico de Maniabón. Este conjunto de Construcción del mapa geomorfológico del municipio Banes a escala 1: 100 000 9 oteros se halla compuesto por dos series, una sobre las costas y otra interior, constituyendo ambos grupos elevaciones de poca altura. El relieve del cabo

presenta sus principales colinas en el litoral, bordeando toda costa, lo que contrasta con las pocas elevaciones que tiene el litoral.

1.2.4 Vegetación

La vegetación en sentido general es abundante, en algunas partes se aprecian bosques con árboles de baja talla y sotobosques con malezas espinosas, relativamente abundantes, donde se manifiesta hacia el norte y este con arbustos espinosos y matorrales de poca altura, hacia el sur, este y oeste se observan áreas de potreros, plantaciones cañeras y otros cultivos menores. Las principales zonas boscosas se encuentran hacia la parte centro-Norte, donde abundan las Guásimas, el Cuyas, los Cedros, las Caobas y el Guarano.

1.2.5 Características económicas

La base económica del municipio es el cultivo de la caña de azúcar, el turismo y el comercio. El turismo alcanza una gran importancia con el polo turístico de la provincia, siendo el tercero a nivel nacional. Entre las principales playas se encuentra Guardalavaca y Esmeralda. Además como ruta turística se encuentra la ruta al Faro de Lucrecia. Esto proporciona una gran cantidad de empleos a los vecinos de la zona. En el área de Río Seco se encuentra la empresa Jesús Menéndez, encargada de la producción de mermeladas y conservas para el consumo nacional y para el polo turístico. Ecured.

1.3. Generalidades de las tobas vítreas o vidrio volcánico

Se conoce en Cuba como "vidrio volcánico" a la toba vítrea cuya fase amorfa constituye más del 50 % del material rocoso que la forma. Esta roca generalmente es toba vitroclástica o vitrocristaloclástica, conteniendo menos del 50 % de montmorillonita, con cantidades pequeñas de carbonatos, feldespato y cuarzo. Se caracteriza por ser muy ligera, porosa y de baja resistencia mecánica. Es abrasiva al tacto y se forma como resultado de la deposición en mares someros, de salinidad normal, de detritos expulsados durante las erupciones volcánicas. Son de composición media hasta ácida, con un 60 % de sílice como promedio.((IGP) 2011).

La toba vítrea se relaciona con otras rocas volcánicas silíceas, que son las que comúnmente en el mundo reciben el nombre de vidrio volcánico, las une su comunidad de origen y la semejanza en sus características físico – químicas y campos de uso en la industria. Entre ellas tenemos la pumita (piedra pómez), la perlita y la obsidiana, que son de composición ácida y con un 70 % de sílice como promedio.((IGP) 2011).

Todo el vidrio volcánico, incluyendo el de la toba vítrea, se forma a partir de magmas ricos en sílice, que se vuelven por ello cada vez más viscosos, lo cual dificulta la cristalización de los minerales presentes, por lo que tienden a solidificarse en forma amorfa (de vidrio). Otro factor es el enfriamiento brusco que experimenta el material durante el proceso eruptivo, que para los de composición media y principalmente ácida, tienen carácter explosivo, durante el cual, el mismo es expulsado en forma de fragmentos y partículas de muy variados tamaños (desde bombas volcánicas hasta cenizas muy finas), los que se enfrían rápidamente en el aire. Todo esto explica por qué el vidrio ácido y medio abunda mucho más que el de composición básica, al que se le denomina taquilita.((IGP) 2011).

1.4. Caracterización química de las tobas vítreas del yacimiento de Flores municipio Banes

La composición química de las tobas empleadas, determinada a partir del método Fluorescencia de rayos X (FRX) se presenta en la tabla 1.1.

Se aprecia que los compuestos que aparecen como constituyentes son: en mayores cantidades óxido de silicio y óxido de aluminio, con composición media el óxido de hierro III, óxido de calcio y en menores cantidades óxidos de sodio, magnesio, potasio y manganeso.

Como se puede observar la suma de SiO2, Al2O3 y Fe2O3 supera el 70 % que se establece como mínimo en la norma ASTM C - 618 para las puzolanas naturales.

Tabla 1.1 Composición química de la muestra de tobas empleadas

Compuesto	Contenido	
Compuesto	Tobas vítreas de la cooperativa de Flores	
SiO2	68,86	
Al2O3	13,63	
MnO	0,06	
MgO	2,64	
Na2O	1,87	
CaO	5,34	
TiO2	0,49	
P2O5	0,10	
K2O	2,27	
Fe2O3	4,58	
SO3	0,11	

Sobre la base de la composición química de las tobas analizadas se pueden clasificar geológicamente como rocas vulcano-sedimentarias, de composición dacítica. Según las investigaciones de Ramachandran, (1995).

1.5. Caracterización mineralógica de las tobas vítreas del yacimiento de Flores municipio Banes

En la tabla 1.2 se muestran los porcentajes de la matriz vítrea, así como el contenido de arcilla y las principales fases mineralógicas cristalinas presentes en estas tobas.

Tabla 1.2 Características mineralógicas de los materiales tobáceos estudiados

Material	Matriz vítrea,	Contenido de	Principales fases		
Tobas vítreas de Flores	80 - 100	10 - 15	Albita, anortita, apatito, diópsido, hematina, hyperstena, Ilmenita, ortoclasa, cuarzo, esfena, X-magnesio		

Como se puede apreciar en la tabla 1.2 las tobas del yacimiento están constituidas esencialmente por vidrio volcánico con un bajo contenido de arcillas para estas rocas (montmorillonita), subordinadamente aunque en bajos porcientos, calcita, cuarzo y feldespato.

1.6. Investigaciones sobre los usos de las tobas vítreas o vidrio volcánico en la industria nacional

En la actualidad se emplea la toba vítrea de los yacimientos Guaramanao y Ají de la Caldera en la producción de limpiador doméstico (GEOLIMP) y de lijas, ambos productos comercializados a nivel nacional.(IGP) 2011).

Existe el interés por parte de la firma Suchel Proquimia en obtener un tipo de pasta limpiadora, como sustituto del producto Limpiol, importado de Guatemala.

Han sido probadas para su utilización como:

- 1. Filtrante de cerveza, jugo de henequén, ron y vino.
- 2. Medio filtrante en la industria azucarera.
- 3. Floculante en la potabilización de aguas superficiales.
- 4. Limpiador doméstico.
- 5. Como material puzolánico para cemento.
- 6. Aislante térmico en la industria cerámica y en otras industrias como el níquel.
- 7. Material filtrante en la purificación de acetileno.
- 8. Lozas antiácidas.
- 9. Medio filtrante en la planta de cloro sosa.
- 10. Relleno de plástico.
- 11. Decapado de metales.
- 12. Sustitución del feldespato en la industria del vidrio.

Atendiendo a sus parámetros físicos – químicos pueden ser utilizadas en:

- 1. Abrasivo en los ralladores de las cajas de fósforos.
- 2. Fabricación de losas de falso techo.
- 3. Fabricación de hormigón celular (Siphorex).

4. Para ladrillos aligerados sin quemar.

Medio filtrante en la industria azucarera

El vidrio volcánico probado como agente filtrante en el proceso de refinación de azúcar, se comportó de modo similar a cuando se realiza con Decalite como se muestra en la tabla 1.3.(IGP) 2011).

Tabla 1.3 Resultado de los análisis de laboratorio realizados a los filtros con ambos filtrantes

Parámetro	Filtro 4	Filtro 5
	Decalite	vidrio volcánico
Brig.	56,04 %	55,06 %
рН	6,9	6,9
Red.	0,13	0,14
Color	14,67	14,93
Cenizas	0,60	0,60
Pol.	54,25	54,25
Pza.	96,80	96,77

La delegación provincial del Ministerio de la industria azucarera (MINAZ) de Santiago de Cuba realizó determinaciones de color en azúcares refinos, crudos, y blanco directo, con muestras de 38 centrales, las que fueron tratadas con toba vitroclástica y tierras de infusorios (BOH3), determinándose que la toba podían usarse como filtrantes en refinerías y fábricas de azúcar blanco directo, no descartándose la posibilidad de usarlo también en azúcar crudo.((IGP) 2011).

Medio filtrante en la industria alimenticia

Pruebas realizadas en la filtración de aceite comestible se demostró que la zeolita natural y la zeolita expandida con vidrio volcánico sustituye las tierras decolorantes

y filtrantes que actualmente se importan. Se obtuvo un producto con calidad y disminuyó el tiempo de filtrado.((IGP) 2011).

Como floculante

Existe una investigación realizada en 1990 sobre el empleo del vidrio volcánico y otros materiales naturales existentes en el país como floculante en el tratamiento de agua para el consumo humano, la cual permite el ahorro de sulfato de aluminio y cuyos resultados están recogidos en un artículo publicado en la revista Ingeniería Hidráulica (volumen XV, № 2 de 1994, pp. 11 – 15). Para este estudio se utilizaron aguas de las presas La Zarza y Bacuranao, que abastecen a la planta potabilizadora Norte Habana. Dichas aguas son hidrógeno carbonatadas cálcicas de alcalinidad media, turbiedad y color altos, con bajo contenido de materia estudios realizaron la orgánica. Estos se manteniendo relación coagulante/floculante en 1:1, obteniéndose una alta remoción de la turbiedad, del Fe y del Mn, y buena para el color y la materia orgánica. El agua utilizada poseía una turbidez de 100 NTU 2; pH = 8; color = 25,30; contenido de materia orgánica = 16,3 %; contenido de Fe = 1,84 %; contenido de Mn = 0,98 %, siendo los resultados obtenidos para el vidrio volcánico.((IGP) 2011).

1.7. Áridos o agregados

Definición: Son aquellas materias de forma granular o fibrosa que, con preparación especial o sin ella han de ser unidos entre sí por un aglomerante, para conformar los hormigones y morteros.(Guerra 2008).

1.8. Principales tipos de áridos

Existen diversas clasificaciones de los áridos, siendo las más empleadas las que los agrupan según su origen y según su tamaño. Los áridos según su origen se clasifican en artificiales y naturales; y según su tamaño en finos y gruesos (Guerra 2008).

√ Áridos naturales: se obtienen producto de la descomposición o trituración de las rocas. La descomposición o meteorización de las rocas se produce por la acción de los agentes naturales como: agua, viento, temperatura, clima, fauna y flora, que con el tiempo van descomponiendo la roca en granos de pequeños tamaños. Muchas veces los tamaños de estos granos son los que usualmente se emplean en la confección de morteros y hormigones, por ejemplo: arena de mar, arena de río, gravas, etcétera (Guerra 2008).

El otro proceso para la obtención de árido naturales es la trituración. Es un método artificial, por medio de molinos se trituran las rocas sólidas en los yacimientos, hasta alcanzar los tamaños adecuados, clasificándolos según sea su destino final (Guerra 2008).

✓ Áridos artificiales: Se preparan con productos diversos en estado pulverulento o pastoso, para comunicarles fácilmente la forma y se endurece por proceso físico-químicos como ejemplo: escoria, ladrillo triturado, pizarra dilatada. Ej. Perlita. (Guerra 2008)

1.8.1. Los áridos en el hormigón

Los áridos constituyen la mayor parte de la masa en el hormigón, pudiendo llegar hasta 80-85 % en peso, de ahí que las propiedades física-químicas y mineralógicas del árido tienen una profunda influencia en la resistencia, elasticidad y demás propiedades del hormigón (Guerra 2008).

Las propiedades deseables de un árido para utilizarlo en hormigón son: que sea químicamente inerte, duradero, duro, resistente a los esfuerzos mecánicos, de forma aproximadamente cúbica después de triturado y capaz de dar una buena adherencia con la pasta de cemento (Guerra 2008).

El tamaño, abundancia y continuidad de los poros del árido es su más importante propiedad física. El tamaño y la naturaleza de los poros afectan la resistencia a los esfuerzos mecánicos de los áridos, la absorción y la permeabilidad. Esta última a su vez da idea de la resistencia a los ataques químicos y la resistencia a las heladas, que tenga un árido (Guerra 2008).

La mayor parte de las propiedades de los áridos son atribuidas directamente a los componentes de las rocas, esta propiedad depende en gran medida del proceso tecnológico utilizado para la fabricación del árido. Algunas otras propiedades que pueden tener importancia especial tales como: Peso específico, propiedades térmicas, resistencia a la abrasión, granulometría, entre otras (Guerra 2008).

Peso específico: esto puede influir en la elección de un árido donde el peso sea un factor a considerar, por ejemplo, los paneles de aislamiento sonoro, donde interesan pesos específicos bajos o una presa de gravedad donde interesan pesos específicos altos, por motivos de seguridad y económicos. El peso específico de los áridos comunes varía desde 2,2 en el caso de las cuarcitas, a 2,9 en el caso de los gabros (Guerra 2008).

Las propiedades térmicas, como el calor específico de los áridos, pueden tener importancia en ciertos trabajos tales como grandes presas y estructuras masivas similares. La conductividad térmica tiene importancia desde el punto de vista de su resistencia al fuego y en la construcción de algunas estructuras tales como chimeneas de hormigón reforzado (Guerra 2008).

En el hormigón se utilizan por lo general áridos con un tamaño que no rebase los 76 mm. Para poder garantizar una granulometría adecuada en el hormigón, se producen en las canteras diferentes grupos de áridos donde cada grupo contiene varias fracciones de tamaño. Convencionalmente se han clasificados en áridos finos (arena) formados fundamentalmente por partículas menores que 4,6 o 5 mm y áridos gruesos (granitos, gravillas, piedras, macadán) formados por partículas fundamentalmente mayores que estos tamaños (Guerra 2008).

1.9. Hormigón Liviano

Definición y clasificación: Se designa convencionalmente como hormigones livianos a aquellos que producen una densidad que fluctúa entre 300 kg/m3 y 1900 kg/m3, ya que los normales presentan una densidad normal de 2400 kg/m3 (Guzmán y Alcívar 2010).

Por su tipo de aplicación el hormigón liviano se clasifica en:

- Hormigón de Relleno
- Hormigón Aislante
- Hormigón Estructural o de alto desempeño

1.9.1. Uso y Aplicaciones

Las aplicaciones que se le pueden dar al hormigón liviano se basan exclusivamente en el diseño que se le dé además de los agregados escogidos para la elaboración del mismo (Guzmán y Alcívar 2010).

El hormigón liviano es ideal para la construcción de elementos secundarios en edificios o viviendas, que requieren de ser ligeros a fin de reducir las cargas muertas; para colar elementos de relleno que no soporten cargas estructurales; para la construcción de vivienda con características de aislamiento térmico (Guzmán y Alcívar 2010).

Hormigón Estructural

El uso fundamental del hormigón liviano busca reducir la carga muerta de una estructura de hormigón, lo que permite a su vez que el diseñador estructural reduzca el tamaño de columnas, zapatas y otros elementos de cargas en la cimentación particularmente (Guzmán y Alcívar 2010).

Este sería un beneficio financiero directo capaz de cuantificarse con bastante aproximación al reducirse el consumo de acero y el peso de la estructura en sí, debido a un ahorro en el diseño de la cimentación y de la estructura de soporte, ofreciendo al arquitecto o ingeniero una mayor libertad de planeación debido a un mayor espaciamiento entre columnas y mayores luces (Guzmán y Alcívar 2010).

Se encuentran además otros beneficios como por ejemplo la reducción en peso produce un ahorro en el transporte de los materiales con respecto al volumen, además se facilitan las operaciones en el sitio de la construcción debido a que hay menos fatiga humana y al mismo tiempo esto ayuda a que se aumente el

rendimiento de cada trabajador, dando lugar a una edificación más rápida y así a una reducción en el costo (Guzmán y Alcívar 2010).

El hormigón estructural liviano posee una densidad en el orden de 1440 kg/m3 a 1840 kg/m3, en comparación con el concreto de peso normal que presenta una densidad en el rango de 2240 kg/m³ a 2400 kg/m³ (Guzmán y Alcívar 2010).

En edificios, el hormigón estructural liviano proporciona una estructura de concreto con mayor calificación de resistencia al fuego, además la porosidad del agregado liviano proporciona una fuente de agua para el curado interno del hormigón que permite el aumento continuo de la resistencia y durabilidad del hormigón (Guzmán y Alcívar 2010).

Aislante Térmico

Un aislante térmico es un material usado en la construcción y caracterizado por su alta resistencia térmica. Establece una barrera al paso del calor entre dos medios que naturalmente tenderían a igualarse en temperatura (Guzmán y Alcívar 2010).

Una de las características del hormigón liviano es el valor alto de aislamiento térmico, el cual aumenta o disminuye en relación inversa con la densidad del material (Guzmán y Alcívar 2010).

La conductividad es la característica por la cual el calor pasa de un material solido a otro cuando están en contacto entre sí, sabemos que el aire es un mal conductor de calor, por lo tanto los hormigones livianos, que son porosos por excelencia lo cual indica que encierran cantidades considerables de aire, los convierte en buenos aislantes térmicos (Guzmán y Alcívar 2010).

Prefabricados

Los prefabricados de hormigón son elementos compuestos de hormigón, realizados en una fábrica o complejo industrial sobre el terreno y, posteriormente, instalados, en su posición final. Los Productos prefabricados de hormigón son

ampliamente conocidos y utilizados, vienen en todo tipo de diseños para utilizar (Guzmán and Alcívar 2010).

El uso más común de prefabricados de hormigón con agregados de peso ligero y del hormigón aireado es en forma de bloques de mampostería utilizados para la construcción de muros de carga y sin carga o muros divisorios (Guzmán and Alcívar 2010).

1.10. Bloques huecos de hormigón. Generalidades

Los bloques huecos de hormigón es el material moderno más popular para construir todo tipo de edificios, como casas, edificios de oficinas, fábricas y hasta edificios de varias plantas sin necesidad de soporte estructural adicional. El buen bloque de hormigón es sinónimo de economía y versatilidad, aplicándose a todas las formas constructivas. Es adaptable, creativo y relativamente fácil de usar. ((IGP) 2011).

Los bloques de hormigón soportan altas cargas, resisten el fuego, tienen caras y lados bien formados y son uniformemente de la más alta calidad. Están disponibles en cientos de formas, tamaños, colores resistentes a la intemperie y alta estabilidad ante la exposición a la luz de sol y agentes climáticos. ((IGP) 2011).

La experiencia internacional en construcción de bloques de hormigón han demostrado el excelente comportamiento de este sistema constructivo al que se asigna cada vez mayor preferencia sobre otros materiales usados en la construcción como consecuencia de las conocidas ventajas que resultan de su empleo y que en esencia se pueden resumir en resistencia, durabilidad, economía y velocidad constructiva. Esto unido a la simplicidad de fabricación hace de este sistema constructivo uno de los procedimientos más completos parar resolver el problema de las construcciones, en las cuales todas las ventajas de aplicación de los bloques son más evidentes al permitir una economía total en materiales y mano de obra en la fabricación de piezas hasta su colocación que difícilmente puede alcanzarse con otros sistemas. ((IGP) 2011).

Según la NC 247- 2010 —Bloques huecos de hormigón. Especificaciones II, los bloques huecos de hormigón son piezas prefabricadas a base de cemento, agua, áridos finos y/o gruesos, naturales y/o artificiales, con o sin aditivos, sin armadura alguna con densidades normalmente comprendidas entre 1 700 kg/m³ y 2200 kg/m³.

Los bloques se fabrican vertiendo una mezcla de cemento, arena y agregados pétreos (normalmente calizos) en moldes metálicos, donde sufren un proceso de vibrado para compactar el material.

Conclusiones Parciales

- La utilización de las tobas vítreas como sustituto de áridos tradicionales favorece el empleo de hormigones al hacerlo más ligero y con propiedades de mayor aislamiento térmico y acústico.
- Los bloques huecos de hormigón son uno de los materiales modernos más populares para la construcción, por lo que es una importante motivación el estudio de los bloques producidos a partir de la utilización de un árido ligero como sustitución del árido grueso (granito), especialmente en soluciones locales que impulsen el desarrollo sostenible.

Capítulo 2: MATERIALES Y MÉTODOS

Este capítulo contiene las características de los materiales que se utilizaron y los experimentos realizados destinados a la determinación de las características físico- mecánicas de los bloques huecos de hormigón producidos con árido ligeros de las tobas vítreas del yacimiento ``toba vítrea de Flore municipio Banes''.

2.1. Recopilación y revisión de la información existente

En esta etapa se realizó el análisis de la bibliografía existente de la región y área de estudio, de la cual se revisó y recopiló la información útil para la investigación. Se realizaron búsquedas en el centro de información del ISMM, donde se tuvo acceso a libros, revistas, trabajos de diploma, tesis de maestría y doctorales, además de búsquedas en Internet. Como resultados se obtuvo información referente a la descripción regional de la región así como información de los materiales analizados en este trabajo.

2.1.1 Diseño experimental

En el diseño experimental para evaluar la influencia del árido ligero en las propiedades físico-mecánicas de los bloques huecos de hormigón se siguió el siguiente plan experimental.

- Toma y selección de la materia prima para la producción de bloques huecos de hormigón.
- 2. Caracterización de la materia prima.
- 3. Fabricación de los bloques huecos de hormigón y realización de ensayos de:
 - Determinación de las dimensiones y su desviación típica.
 - Resistencia a la compresión a los 7 y 28 días.
 - Absorción.
 - 2.2. Toma y preparación de la muestra

2.2.1. Toma de la materia prima

Para la realización de la investigación la materia prima (ver anexos 1) fue tomada en el yacimiento ``toba vítrea de Flores´´ ubicado en la parte noroeste de la cooperativa 26 de julio a 4 km al norte del poblado de Flores.

2.2.2. Preparación de la materia prima

Como se muestra en el anexo 2, la muestra fue sometida a un proceso de trituración de dos etapa, la primera etapa fue de forma manual con un mazo de 5 kg reduciendo la muestra hasta obtener fragmentos menores de 100 mm aproximadamente, seguidamente se procedió a la segunda etapa de trituración empleando una trituradora de mandíbula (ver anexos 4).

El producto de la segunda etapa del proceso de trituración se le realizaron manualmente dos operaciones de cribado de control la primera con un tamiz de 9 mm de malla, la segunda con uno de 4 mm, el material retenido en la primera etapa de cribado se recirculo en la segunda etapa de trituración y al cernido se le realizó la segunda etapa de cribado.

El retenido de la segunda etapa de cribado se designó para la fabricación de bloque hueco de hormigón.

2.3. Caracterización de las materias primas para la producción de los bloques huecos de hormigón

Para la fabricación de los bloques huecos de hormigón patrones se utilizó árido grueso - graba (granito 3/8 procedente de Banes (ECOPP)), árido fino – (polvo de piedra procedente de Banes (ECOPP)) y cemento PP-350 de cualquier industria productora del país.

2.4. Fabricación de bloques huecos de hormigón

Se realizó la producción de los bloques huecos de hormigón en la bloquera de Banes perteneciente al ECOPP. Se utilizó las materias primas caracterizadas anteriormente. En este taller se utiliza una máquina estacionaria (ver anexo 3) de hacer bloques de 10 antigua con todos sus elementos unidos entre sí con estructura metálica de vigas y angulares, así como los elementos, moldes y mecanismos que permiten el vertido, el zarandeo y la compactación de la mezcla. También es parte de esta un motor eléctrico para lograr el funcionamiento del mecanismo de vibración en la mesa vibratoria, lo cual logra la compactación de los bloques dentro de los moldes y su posterior remoción con el mecanismo botador hacia las parrillas para el traslado al secado de los mismos.

Las mezclas para la producción de estos bloques se fabricaron en una hormigonera con la dosificación que se muestra en la tabla 8, luego se vertió en la banda transportadora que deposita la mezcla encima de la cajuela de la máquina para la producción de los bloques. Los bloques una vez terminado el proceso de producción se retiran encima de paletas de madera, los cuales se trasladan con un hombre para su posterior secado y curado. El curado es llevado a cabo rociándole agua a cada uno de los bloques durante una semana, ya sea con cubos o con una manguera.

La dosificación empleada para la fabricación de los bloques se muestra en la tabla 2.1.

Tabla 2.1 Dosificación utilizada para la fabricación de bloques huecos de hormigón

Cemento p-350	Polvo Piedra	Granito
1	3	2

En el caso del granito de toba vítrea se le roció agua antes de hacer la mezcla para evitar que este material absorbiera el agua de esta ya que este material es muy poroso y no le daría tiempo al cemento a reaccionar. Aclarar que según la norma NC 247: 2010 — Bloques huecos de hormigón — Especificaciones los bloques producidos se clasifican de tipo III que son los que tienen 10 cm de espesor.

2.5. Descripción de los ensayos realizados a los bloques huecos de hormigón

2.5.1. Determinación de las dimensiones

Este método se establece para determinar las dimensiones de fabricación de los bloques. Se efectúa la medición de cada uno de los bloques que constituyen la muestra y se determina el promedio de cada una de sus dimensiones. Esta medición se puede realizar con una cinta metálica con valor de división de 1mm o regla graduada con valor de división de1 mm siguiendo el plan establecido como se muestra en la tabla 2.2.

Tabla 2.2 Plan establecido para determinar las dimensiones de fabricación de los bloques

Dimensiones	Procedimiento de medición	
Longitud	3 mediciones en las cabezas	
Anchura	7 mediciones en 3 puntos por la cara superior y 3 puntos por la cara inferior	
Altura	6 mediciones en 3 puntos de cada cara lateral	

La dimensión promedio (\bar{X}) se calcula por medio de la siguiente expresión:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

donde

 \bar{X} : Dimensión promedio de la muestra, mm;

 X_i : Dimensión de cada bloque, mm;

n: Tamaño de la muestra (número de bloques que constituyen la muestra);

 S_x : Desviación típica de las dimensiones de la muestra, mm.

2.5.2. Resistencia a compresión

Este método se establece para determinar el valor de la resistencia media a la compresión de los bloques.

Cada bloque que constituye la muestra de ensayo es sometido a una carga de compresión en el sentido longitudinal de los huecos hasta la rotura determinándose la resistencia a la compresión.

Preparación de las muestras de ensayo

Se eliminan las irregularidades o exceso de materiales en las caras de los bloques; para ello se utilizó el hacha de albañil y la lima de grano grueso. Después se cortó el bloque en dos partes por la mitad con una sierra de disco. Se coloca una capa de pasta (capping) sobre la superficie de carga y apoyo de los bloques (ver anexo 5) con el fin de nivelar estas, para ello se utiliza la meseta nivelada, se evita la adherencia entre las capas de nivelación y la meseta aplicando una capa de aceite desmoldante. La capa de nivelación de la superficie de carga y apoyo puede estar constituida por un mortero de cemento gris P 350 y yeso con una proporción de 4:1 (4 partes de cemento con una parte de yeso), se adiciona agua hasta que adquiera una consistencia pastosa capaz de asentar el bloque y no disgregarse bajo su peso. La resistencia a compresión de estos morteros será superior a la especificada para los bloques.

Para la aplicación de la capa de nivelación, se vertió el mortero preparado sobre la superficie engrasada y se esparció con la cuchara de albañil formando una capa uniforme, rápidamente se colocó el bloque sobre esta capa comprobándose su perpendicularidad con la base por medio de un nivel de burbuja en posición vertical acomodándolo con golpes ligeros con el mango de la cuchara de albañil hasta que quede bien asentado el bloque, retirándose el material sobrante por los lados una vez rematados estos con un movimiento de la espátula entrante hacia arriba. Al notarse el endurecimiento de la mezcla antes de las dos horas de colocado el recape, se producirá un leve movimiento sobre el plano horizontal al bloque para evitar su adherencia a la meseta, después se levanta retirándose de

la misma y se coloca de forma vertical evitando dañar la capa de nivelación en las esquinas.

Se limpió la meseta y se repitió el mismo proceso para aplicar la segunda capa de nivelación sobre la otra cara del bloque, se comprobó el paralelismo y la verticalidad de las caras por medio del nivel de burbujas.

Se observará que las capas de nivelación de los bloques no se dañen en la manipulación esperándose entre 24 horas y 72 horas para efectuar el ensayo.

Para efectuar el ensayo cada bloque a ensayar se colocará suavemente sobre el plato inferior de la máquina de ensayos a compresión sin deslizarlo por este y sobre un área previamente determinada con un centro geométrico conocido que coincide con el eje de carga de la máquina.

Al poner en contacto la cara superior del bloque con el plato superior de la máquina se hará suavemente sin que se produzcan impactos al bloque y que se garantice un buen contacto entre ambas superficies.

En el momento en que la superficie de la cara superior de la prensa hidráulica (ver anexo 6) y el bloque tengan contacto se comienza a aplicar una carga a velocidad constante de 5 kN/s hasta determinar el esfuerzo máximo hasta la rotura.

Para el ensayo de resistencia a la compresión se aplicó una carga de velocidad constante de 5 kN/s en el sentido longitudinal de los huecos hasta determinar el esfuerzo máximo hasta la rotura.

Expresión de los resultados

La resistencia a la compresión de cada bloque (R'_i) se calcula por medio de la siguiente expresión:

$$R'_i = \frac{F_j}{A_i \cdot 1000}$$

R'_i: Resistencia a la compresión de cada bloque, MPa;

F_i: Carga de rotura, kN;

 A_i : Área de la sección bruta del bloque, m².

La resistencia a la compresión media (R'_m) se calcula por medio de la siguiente expresión:

$$R'_{m} = \frac{\sum_{i=1}^{n} R'_{i}}{n}$$

R'_m: Resistencia a la compresión media, MPa;

n: Tamaño de la muestra de ensayo.

2.5.3. Absorción

El ensayo de absorción tiene como objetivo de determinar la capacidad de los bloques para absorber una determinada cantidad de agua, donde deberán cumplir con los valores máximos según la categoría de estos, fijados en la norma.

Se colocan los bloques enteros en la estufa por 24 horas a una temperatura de 100°C aproximadamente, separadas entre sí y se secan hasta tener una masa constante. Se extraen y se dejan enfriar el tiempo necesario para que puedan manipularse sin uso de protección, realizándose dos o tres pesadas por intervalos de una hora; si éstas pesadas sucesivas no difieren del 1%, los bloques o las porciones estarán a masa constante; tomándose el valor de la última pesada como la masa constante.

Una vez concluido este proceso se colocarán los bloques dentro del estanque lleno de agua de forma que éste los cubra totalmente. Se dejan en reposo sumergidas 24 horas posteriormente se extraen y se dejan escurrir sobre las parrillas metálicas. El agua superficial se eliminará con un paño húmedo secándolas hasta que pierdan el brillo cuidando de no exponerlas al sol durante este proceso; se cubren con paños húmedos conduciéndolas así hasta la balanza, se pesan, determinándose así la masa húmeda y la diferencia de ambos pesos

muestra el porciento de absorción que es capaz de absorber cada bloque que se calcula por medio de la ecuación siguiente:.

$$A_i = \frac{M_{hi} - M_{si}}{M_{hi}} \cdot 100 \%$$

 A_i : Absorción de la muestra, %;

 M_{hi} : Masa húmeda de cada unidad de la muestra, kg;

 M_{si} : Masa seca de cada unidad de la muestra, kg.

La absorción promedio (Am) se calcula por la fórmula siguiente:

$$A_m = \frac{\sum_{i=1}^n A_i}{n}$$

2.5.4. Determinación de la disminución de masa

Este ensayo se realiza con el objetivo de determinar la cantidad de masa que pierde el bloque hueco de hormigón de árido ligero con respecto al patrón.

Se pesan los bloques a temperatura ambiente con una balanza y se toman los valores, después se colocan en la estufa por 24 horas a una temperatura de 100°C aproximadamente, separadas entre sí y se secan hasta tener una masa constante. Se extraen y nuevamente se pesan.

Mediante las expresiones siguientes se determina la disminución de la masa de los bloques a temperatura ambiente y en estado seco.

$$DM_{amb} = \frac{MP_{amb} - MTV_{amb}}{MP_{amb}} \cdot 100$$

$$DM_{seco} = \frac{MP_{seco} - MTV_{seco}}{MP_{seco}} \cdot 100$$

Donde:

 DM_{amb} y DM_{seco} : es la disminución de la masa en el medio ambiente y en estado seco respectivamente, %;

 MP_{amb} y MP_{seco} : es la masa del bloque patrón en el medio ambiente y en estado seco respectivamente, kg;

 MTV_{amb} y MTV_{seco} : es la masa del bloque con toba vítrea como granito en el medio ambiente y en estado seco respectivamente, kg.

La disminución de masa promedio se calcula por la siguiente ecuación:

$$DM_i = \frac{\sum_{i=1}^{n} (MP_i - MTV_i)}{n}$$

Dónde:

 DM_i : es la disminución de la masa en el medio, %;

 MP_i : es la masa del bloque patrón en el medio, kg;

 MTV_i : es la masa del bloque con toba vítrea como granito en el medio, kg;

Conclusiones parciales

- Las muestras de tobas vítreas seleccionadas para la producción de los bloques se consideran representativas.
- Las técnicas analíticas y experimentales que fueron aplicados en los materiales y mezclas preparadas para el desarrollo de la investigación reúnen los requisitos según las normas cubanas.

Capítulo 3: ANÁLISIS Y DISCUCIÓN DE LOS RESULTADOS

En este capítulo se realiza un análisis de los resultados obtenidos de las mediciones realizadas con una cinta métrica metálica, los ensayos de resistencia a la compresión, la determinación de la absorción y la disminución de la masa de los bloques huecos de hormigón empleando toba vítrea comparados con los patrones.

3.1. Análisis de los resultados obtenidos en bloques huecos de hormigón.

3.1.1. Resultados de las mediciones realizadas a los bloques huecos de hormigón

Las mediciones se le realizaron a cuatro bloques patrones, con una cinta métrica metálica con un valor de división de 1mm. En la tabla 3.1 se muestran los resultados de las mediciones realizadas.

Tabla 3.1 Resultados de las mediciones realizadas a los bloques patrones

Elemento	Largo; m.	Ancho; m.	Alto; m.
Bloque 1	0,400	0,100	0,196
Bloque 2	0,400	0,100	0,196
Bloque 3	0,400	0,100	0,195
Bloque 4	0,400	0,100	0,196
Promedio	0,400	0,100	0,196

Como se puede observar todas las mediciones realizadas a los bloques se encuentran en el rango de aceptación admisible de la norma (NC 247: 2010 — Bloques huecos de hormigón — Especificaciones) (ver tabla 3.2).

Tabla 3.2 Dimensiones principales y tolerancias admisibles

Tipo de bloque	L (±0,003 m)	b (±0,003 m)	h (±0,003 m)
I	0,495	0,200	
	0,395		
II	0,495	0,150	
	0,395		
III	0,495	0,100	0,195
	0,395		
IV	0,495	0,065	
	0,395		

Con el mismo procedimiento que se le realizaron las mediciones y el cálculo del promedio de los bloques patrones se le realizó a cuatro de tobas vítreas. En la tabla 3.3 se muestran los resultados de este ensayo.

Tabla 3.3 Resultados de las mediciones realizadas a los bloques de tobas vítreas

Elemento	Largo; m.	Ancho; m.	Alto; m.
Bloque 1	0,400	0,100	0,195
Bloque 2	0,400	0,100	0,195
Bloque 3	0,400	0,100	0,195
Bloque 4	0,400	0,100	0,195
Promedio	0,400	0,100	0,195

Como se puede observar todas las mediciones realizadas a los bloques se encuentran en el rango de aceptación admisible de la norma NC 247: 2010 — Bloques huecos de hormigón — Especificaciones (ver tabla 3.2).

3.1.2. Resultados del ensayo de resistencia a compresión

El ensayo de compresión se le realizó a cuatro bloques a la edad de 7 días. En las tablas 3.4 se muestran los resultados obtenidos por la prensa hidráulica que se llevó a la unidad de (MPa).

Tabla 3.4 Comportamiento de la resistencia a compresión de los bloques patrones a la edad de 7 días

Patrón	Compresión; MPa
Bloque #1	3,524
Bloque #2	2,456
Bloque #3	2,580
Bloque #4	2,600
Promedio	2.790

Se puede observar en la tabla anterior que todos los valores se encuentran por encima de 2 MPa que es el valor mínimo requerido por la norma NC 247: 2010 — Bloques huecos de hormigón — Especificaciones para este tipo de bloque.

Con el mismo procedimiento que se le realizó este ensayo a los bloques patrones se le realizaron a los cuatro de tobas vítreas como se muestra en la tabla 3.5.

Tabla 3.5 Comportamiento de la resistencia a compresión de los bloques de tobas vítreas a la edad de 7 días

Toba vítrea	Compresión; MPa
Bloque #1	2,321
Bloque #2	2,350
Bloque #3	2,290
Bloque #3	2,285
Promedio	2,311

Como se puede observar todos los bloques de toba vítrea cumplen con el valor mínimo que exige la norma NC 247: 2010 pero comparado con los patrones hay una disminución de la resistencia.

A los 28 días se volvió a realizar este ensayo a los bloques patrones, con el mismo procedimiento que se le realizó a los siete días como se muestra en la tabla 3.6.

Tabla 3.6 Comportamiento de la resistencia a compresión de los bloques patrones a la edad de 28 días

Patrón	Compresión; MPa
Bloque #1	4,520
Bloque #2	4,503
Bloque #3	4,433
Bloque #4	4,633
Promedio	4,522

Se puede observar en la tabla anterior que todos los valores se encuentran por encima de 2,5 MPa que es el valor mínimo requerido por la norma NC 247: 2010 — Bloques huecos de hormigón — Especificaciones.

Tabla 3.7 Comportamiento de la resistencia a compresión de los bloques de toba vítrea a la edad de 28 días

Toba vítrea	Compresión; MPa
Bloque #1	3,750
Bloque #2	4,130
Bloque #3	4,450
Bloque #4	3,750
Promedio	4.020

En la tabla anterior se observa que todos los resultado obtenido de los bloques de toba vítrea a los 28 día se encuentran en lo normalizado según la norma NC 247: 2010 — Bloques huecos de hormigón — Especificaciones, pero igual que el resultado de los 7 días bajan la resistencia comparado con los patrones.

La determinación del promedio de la resistencia a la compresión de los bloques patrones y de toba vítrea se realizó mediante la ecuación 3 del capítulo anterior. Los resultados de este cálculo se muestran en el gráfico Figura 3.1.

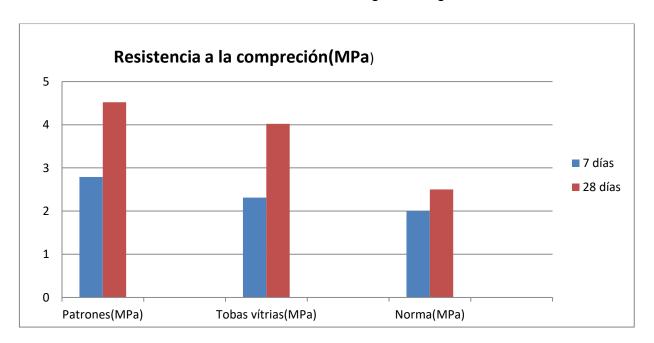


Figura 3.1 Promedio obtenido del ensayo de la resistencia a la compresión realizado a los bloques

Con estos resultados mostrados en la figura anterior se puede observar que el promedio de todos los bloques ensayados cumplen satisfactoriamente con la resistencia mínima establecida en la norma (NC 247: 2010 — Bloques huecos de hormigón — Especificaciones) para este tipo de bloques, la cual específica que los bloques tipo III el valor mínimo de resistencia a la compresión a la edad de 7 y 28 días es de 2 y 2,5 MPa respectivamente, pero al comparar los de toba vítrea con los patrones se puede observar que hay una pequeña disminución de la resistencia.

3.1.3. Análisis de los resultados del ensayo de absorción

El ensayo de absorción de los bloques huecos de hormigón se les realizó a bloques patrones producidos con la dosificación antes mencionada en el capítulo II para obtener la cantidad de agua que pueden absorber. La siguiente tabla 3.8 muestra los resultados del ensayo de absorción a los bloques patrones.

Tabla 3.8 Absorción de los bloques huecos de hormigón patrón

	Pesos, Kg		Absorción, %
Elementos	Peso seco	Peso húmedo	
Bloque 1	13,560	13,900	2,446
Bloque 2	13,710	14,010	2,141
Bloque 3	13,623	14,103	3,404
Promedio	13,630	14,004	2,663

En la tabla anteriormente expuesta se obtiene que el porciento de absorción de los bloques patrones realizado en la ECCOP varía de 2,141 % hasta 3,404 %.

La siguiente tabla 3.9 muestra los resultados del ensayo de absorción a los bloques de tobas vítreas.

Tabla 3.9 Absorción de los bloques huecos de hormigón con la toba vítrea como grava (granito 3/8)

	Pesos, g		Absorción, %
Elementos	Peso seco	Peso húmedo	
Bloque 1	12,740	13,450	5,6
Bloque 2	12,820	13,550	5,7
Bloque 3	12,870	13,610	5,7
Promedio	12,810	13,536	5,7

Como se muestra en la tabla anterior el porciento de absorción de los bloques empleando toba vítrea es mayor comparándolo con los patrones, que varía de un 5,6 % hasta un 5,7 %.

El promedio de la absorción de los bloques patrones y de toba vítrea se determinó mediante la ecuación 5 del capítulo anterior el resultado se muestra en la figura 3.2.

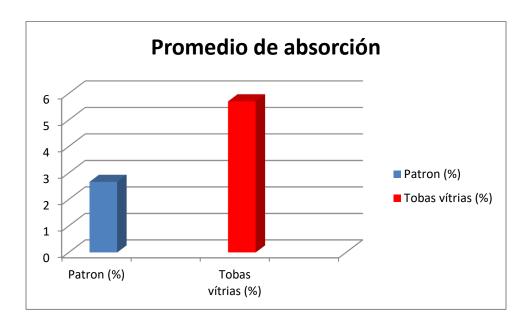


Figura 3.2 Promedio obtenido del ensayo de absorción realizado a los bloques

La norma NC 247: 2010 — Bloques huecos de hormigón — Especificaciones no tiene límite de absorción para los bloques de 10 mm de espesor porque estos son empleados solamente para paredes divisoras, pero comparándolo con los patrones como se muestra en la figura anterior se puede apreciar que aumenta el porciento de absorción de estos bloques.

3.1.4. Resultados de la determinación de disminución de masa

Este ensayo se le realizó a dos bloques de cada tipo, patrones y de tobas vítreas a la temperatura ambiente. Los resultados se obtuvieron mediante la ecuación 6 los cuales se muestra en la tabla 3.10, a la temperatura ambiente.

Tabla 3.10 Determinación de disminución de masa de los bloques en el medio ambiente

Elementos	Patrón (kg)	Toba vítrea (kg)	Masa perdida (%)
Bloque 1	14,350	13,280	7,472
Bloque 2	14,508	13,190	9,084
Promedio	14,429	13,235	8,278

Como se puede observar en la tabla anterior cada bloque que se empleó toba vítrea comparándolo con el patrón, hay una disminución de masa mayor que el 8 % en el medio ambiente.

Mediante la ecuación 7 se determinó la pérdida de masa para el estado seco como se muestra en la tabla 3.11.

Tabla 3.11 Determinación de disminución de masa de los bloques en estado seco

Elementos	Patrón (kg)	Toba vítrea (kg)	Masa perdida (%)
Bloque 1	13,240	12,353	6,699
Bloque 2	13,300	12,240	7,969
Promedio	13,270	12,296	7,334

En la tabla ante expuesta muestra que en estado seco la toba vítrea reduce la masa del bloque en un valor no menor del 7 %.

Mediante los resultados obtenidos anteriormente y la ecuación 8 del capítulo anterior se determinó el promedio de disminución de la masa de los bloques con la sustitución de la grava (granito 3/8) por toba vítrea como se muestra en la figura 3.3.

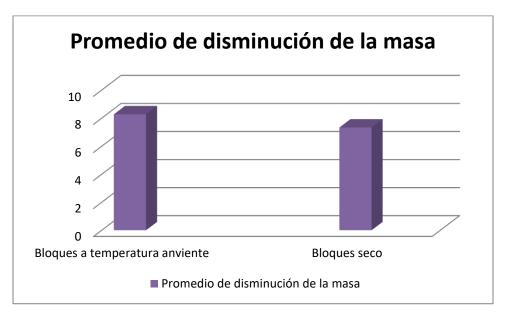


Figura 3.3 Promedio del porciento disminución de la masa de los bloques de toba vítrea con respecto a los patrones

Como se muestra en la figura anterior los bloques a temperatura ambiente reducen la masa en un promedio de 8,278% comparados con los bloques en estado seco el promedio de disminución de la masa es de 7,334%.

3.2. Valoración socioeconómica y ambiental

El actual trabajo establece un paso muy significativo para el perfeccionamiento de nuevos materiales con excelentes posibilidades de ser utilizado como materiales de construcción. Se ha podido constatar de manera particular que dentro de la provincia Holguín existen municipios con posibilidades de explotar recursos minerales para la construcción, uno de ellos es el municipio de Banes.

El empleo de las tobas vítreas estudiadas en la presente investigación contribuye al desarrollo de nuevos materiales de construcción y con ello, ahorrar un volumen importante de recursos minerales.

Además fundamenta la creación de nuevas fuentes de empleo, con oportunidades para la ocupación de fuerza de trabajo de poca calificación. El incremento sustancial de la construcción de nuevas viviendas y otras obras sociales, con indicadores económicos de racionalidad. Y basado en las propiedades de estas materias primas de ser aislantes térmicos y acústicos, contribuiría al mejoramiento de la calidad de vida de las personas.

Este material tendría menos impacto ambiental, por el método de explotación que por tener baja resistencia mecánica seria sin el uso de explosivos. Esto es de suma importancia pues casi la totalidad de las canteras de áridos para la extracción minera se emplean mediante los trabajos de barrenación y de sustancias explosivas. Un ejemplo de esto es el yacimiento de tobas vítreas Guaramano en Holguín y Jiguany en Granma, que se explotan sin el uso de explosivos.

Decir además que la preparación mecánica de esta materia prima contribuiría al ahorro energético, que al ser triturada o molida se fragmenta más fácil al ejercer menos resistencia que el árido tradicional por ser un material poroso.

Conclusiones parciales

Las dimensiones de los bloques huecos de hormigón son adecuadas de acuerdo a los requisitos normalizados por la norma NC 247: 2010.

- Se realizó el ensayo de compresión a las edades de 7 y 28 días dando los resultados con la exigencia de la norma (NC 247: 2010).
- > Se calculó la disminución del peso de los bloques de toba vítrea como sustituto del granito dando un valor de 7 % menor que los bloques patrones.

CONCLUSIONES

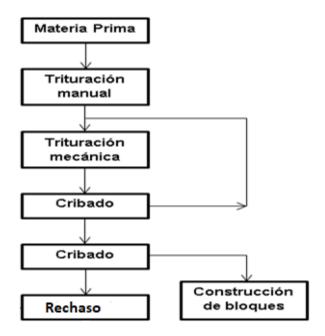
- Se realizó un análisis químico y mineralógico a las tobas vítreas de la región de Flores municipio Banes.
- Se determinó el comportamiento de las tobas vítreas al ser empleadas como árido ligero en la construcción de bloques huecos de hormigón dando como resultado bloques un poco más ligeros y con una resistencia dentro de la norma cubana.
- ➢ Se realizó ensayos de resistencia a la compresión a los 7 días, con un valor promedio de 2,7 MPa el patrón y 2,3 MPa el de tobas vítreas, a los 28 días los resultados de la resistencia a la compresión de los bloques patrones aumentaron de (2,7 a 4,5 MPa) y de (2,3 a 4 MPa) para los de toba vítrea quedando conforme con la exigencia de la norma cubana (NC 247: 2010) como mínimo.
- ➤ Se determinó la absorción de cada bloque a ensayar obteniendo un promedio de 5,7 % para los de toba vítrea que duplica el 2.3 % de los patrones.

RECOMENDACIÓN

- Evaluar las propiedades físico-mecánica de las tobas vítreas al ser empleadas como árido fino (arena y Polvo de piedra) para la fabricación de morteros de repello de paredes para lograr un mayor aislamiento acústico y térmico.
- Valorar las toba vítrea como árido ligero en la construcción de baldosa, loseta y mosaico para lograr un aprovechamiento integral de esta materia prima.

BIBLIOGRAFÍA

- 1. Aleaga, F. M. 2012. Separación de la montmorillonita de las tobas vítreas. Moa, ISMM.
- 2. Aguilar R. A. 2014; Almenares, R. S 2011; Calzada D. 2016; Tamayo N. 2016: Informe preliminar de los trabajos de campo realizados en la región de Moa, Sagua y Holguín, Cuba.
- 3. Brito. M. & Rivera, D. 2005: Análisis de los factores influyentes en el proceso de elaboración de bloques.
- 4. Cabrera, M. R. 2010: Valoración de las tobas vítreas y zeolitizadas de la provincia Holguín para su utilización como puzolana natural en la construcción. Moa. ISMM.
- 5. Consuegra, V. Y. 2005: Valoración de los recursos minerales no metálicos del municipio Banes en función al desarrollo sostenible y ordenación del territorio. Materiales de construcción. Moa. ISMM.
- 6. Costafreda, J. L.; Calvo, B. y Parra, J. L. 2011 : Criterios para el aprovechamiento de tobas dáciticas en la sustitución de cemento Pórtland en morteros y hormigones. INTEREMPRESAS OBRAS PÚBLICAS: 162-780/2011.
- 7. Guerra, J. d. A. (2008). Reevaluación de las tobas vítreas del yacimiento Sagua de Tánamo como puzolanas naturales. Moa, ISMM.
- 8. Guzmán, L. F. V. and G. E. S. Alcívar (2010). Hormigones livianos. Guayaquil, Ecuador, Escuela Superior Politécnica del Litoral (ESPOL).
- 9. IGP, I. d. G. y. P. (2011) Rocas y minerales industriales de la República de Cuba.
- 10. Justo A. 2012: Evaluación preliminar de materiales cementantes suplementarios como aditivos al cemento P-350 para su utilización en la construcción.


- 11. López, P. L. M. 2006: Caracterización geológica de las materias primas mineras de los municipios Moa Sagua de Tánamo para su empleo como 64 material de construcción. Moa. ISMM. 44
- 12. Martínez, R. A. A. 2014: Tobas vítreas de Sagua de Tánamo como aditivo en la producción de objetos de cerámica roja. Moa. ISMM.
- 13. Matos, D. C. 2016: Evaluación de la reactividad puzolánica de las tobas vítreas calcinadas del yacimiento el Picao. Moa. ISMM.
- 14. Méndez, C. Roberto (2010): Valoración de las tobas vítreas y zeolitizadas de la provincia Holguín para su utilización como puzolana natural en la construcción.
- 15. Miranda Garrido L. Mary 2016: Influencia de la secuencia de preparación de las tobas zeolitizadas del yacimiento Caimanes en la reactividad.
- 16. Muxlanga, R. J. 2009: Evaluación de las tobas vítreas del yacimiento Sagua de Tánamo para su utilización como árido y puzolana natural en la construcción. Moa. ISMM.
- 18. NC 247: 2010 Bloques huecos de hormigón Especificaciones.
- 19. NC 251: 2010 Áridos para hormigones hidráulicos-requisitos.
- 20. NC 293: 2005: Código de buenas prácticas para el curado del hormigón.
- 21. NC TS 527: 2007: Cemento hidráulico. Método de ensayo. Evaluación de las puzolanas.
- 22. De Armas, J. 2006: Reevaluación de las tobas vítreas del yacimiento Sagua de Tánamo como puzolanas naturales Moa. ISMM.
- 23. Peña, R. R. 2013: Evaluación de las tobas vítreas como aditivo en la producción de cerámica roja para la industria de materiales. Moa. ISMM.
- 24. Pérez, Y. M. 2011: Comportamiento de las funciones de clasificación y fragmentación para la molienda de las tobas vítreas del yacimiento Sagua de Tánamo. Moa. ISMM.

- 25. Ramachandran, V. S. (1995): Concrete Admixtures Handbook. Second Edition, Noyes. 670 p.
- 26. Reyes, A. R. S. 2011: perspectivas de utilización de tobas vítreas y zeolitizadas de la provincia Holguín como aditivos puzolánicos. Moa. ISMM.
- 27. Rodríguez, Z. Y. 2017: Evaluación de las tobas vítreas como árido ligero para la construcción de bloques de hormigón. Moa. ISMM.
- 28. Silot, D. R. (2015). Evaluación de prefabricados de pequeño formato con cemento de bajo carbono criollo. Moa, ISMM.
- 29. Tendai N. 2011. Estudio Químico Mineralógico de los lateríticos ferrosialíticos en los sectores Téneme, Farallones y Cayo Guam, Tesis doctoral.
- 30.https://es.wikipedia.org/wiki/Especial:Buscar?search=Árido+o+agregado&sourc eid=Mozilla-search

ANEXOS

Anexo 1: Muestra de las tobas vítrea procedente del yacimiento de la cooperativa de Flores, municipio Banes

Anexo 2: Esquema de preparación de la materia prima.

Anexo 3: Máquina estacionaria de fabricación de bloques

Anexo 4: Trituradora de mandíbula

Anexo 5: Bloques con el Capping

Anexo 6: Prensa hidráulica