

Tema: Evaluación del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

Tutores: Dr. Secundino Marrero Ramírez M.Sc. Ileana González Palau

Moa -2007

Pensamiento

"Dar ejemplo no es la principal manera de influir sobre los demás; es la única manera."

Albert Einstein

Dedicatoria

Dedico el presente trabajo mis padres, hermana, a mi familia, a los que siempre estuvieron a mi lado y han puesto su amor y voluntad para lograr mi más soñada meta.

Agradecimientos

Es a veces muy delicado cuando llega la hora de agradecer lo que nos ha costado una gran parte de la vida construir, porque estas líneas no alcanzarían para hacerlo y puede que existan héroes ocultos que no estén mencionados aquí, para todos ellos mi más sentido agradecimiento.

A la revolución que me dio la oportunidad de estudiar esta carrera.

A mis queridísimos padres, abuelos y hermana por su apoyo en todo momento.

A mis Amigos, o mejor dicho hermanos Yuri, Elker, que fueron una cantera de sugerencias y apoyo.

A mi mejor amiga Yineidis que siempre estuvo a mi lado hasta en los momentos mas duros brindándome su cariño y aliento para continuar,

A mi novia Maria por su paciencia y dedicación.

A mis tutores Secundino e Ileana por brindarme una fuente de saber inigualable.

A los compañeros de la producción en el Combinado Mecánico del Níquel Ramón, Ariel, Pupo, Geney, Dacal.

A todos mis profesores y compañeros de clases que me han acompañado en estos 5 años

Al compañero Manuel Pelier por su gran ayuda en la impresión del presente trabajo de diploma.

A Francisco Pérez Londres y Juan José Rodriguez por el equipamiento prestado para la ejecución de este trabajo.

A Bety por la disposición de ayudarme que tuvo en todo momento.

A Arcaya por su ayuda con el diseño.

A todos los que de una forma u otra dieron su granito de arena directa o indirectamente en la realización de este trabajo de diploma.

Resumen

El trabajo de diploma titulado: "Evaluación del sistema de suministro eléctrico de la Empresa Mecánica del Níquel" Gustavo Machín Goush de Beche Consta de 3 Capítulos.

En este trabajo se valora los principales problemas que afectan a las redes de suministro industrial, asi como los indicadores y normas de calidad por las cuales nos regiremos a la hora de evaluar su comportamiento.

En el mismo aparecen las características del sistema de suministro eléctrico de la Empresa, se describen las instalaciones actuales del objeto de estudio y se determinan las causas negativas que influyen en la mala utilización de la energía.

Por otra parte se aborda lo relacionado con la compensación de potencia reactiva en la Empresa. Donde sugerimos la utilización de bancos de condensadores y filtros pasivos para el mejoramiento del rizado de la forma de onda de la corriente eléctrica armónica para un mejor desempeño del sistema eléctrico.

En el trabajo se realiza un profundo análisis bibliográfico de la literatura clásica de suministro eléctrico y además se utilizan Software profesionales como el DYCSE para la corrida del flujo fundamental y armónico, además se realizaron mediciones en todos los centros de carga con el analizador de redes digital INTERLOGER, que permitieron llegar a conclusiones definitivas sobre el estudio.

Finalmente aparecen en el trabajo las conclusiones y recomendaciones en cuanto a valoración económica de las variantes de suministro escogidas para este sistema en particular, lo cual constituye el objetivo fundamental de este trabajo. Los diagramas y los modelos obtenidos en el DYCSE y los resultados de las mediciones aparecen en los anexos y en los capítulos para una mayor comprensión del trabajo realizado.

Autor: Omar Figueredo Oliveros

Summary

Summary

The Diploma work titled: "Evaluation of the electrical system of supply in the enterprise

mechanic of the Nikel" Gustavo Machín Goush de Beche. Has (3) chapter.

In this work one values the main problems that affect to the networks of industrial provision

as well as the indicators and norms of quality by which we will govern ourselves at the time

of evaluating its behavior.

In he himself they appear the characteristics of the system of electrical provision of the

Company, the present facilities of the study object are described and the negative causes

are determined that they influence in the bad use of the energy.

On the other hand the related thing to the compensation of reactive power in the Company.

Where we suggested the use of banks of condensers and passive filters for the

improvement of the curling of the waveform of harmonic the electrical current for a better

performance of the electrical system.

In the work a deep bibliographical analysis of the classic Literature of professional electrical

provision is made and in addition they are used Software like the DYCSE for the bullfight of

the fundamental and harmonic flow, in addition measurements were made in all the centers

of load with the digital analyzer of networks INTERLOGER, that allowed to reach definitive

conclusions on the study.

Finally they appear in the work the conclusions and recommendations as far as economic

valuation of the selected variants of provision for this system in individual, which constitutes

the main target of this work. The diagrams and the models obtained in the DYCSE and the

results of the measurements appear in the annexes and the chapters for a greater

understanding of the made work.

Introducción 1

Introducción:

En estos años en que ha tenido más auge la revolución energética, se han adoptado un gran grupo de medidas para aminorar el consumo excesivo de energía eléctrica en nuestro país y en particular en las empresas asociadas a la industria del Níkel.

Las cargas no lineales tradicionales, tales como hornos de arco y de inducción, reactores saturables, sumado al gran desarrollo de la tecnología de control por medio de equipamiento electrónico de potencia controlado por tiristores, ha llevado a un incremento significativo de la cantidad de cargas no lineales en el sistema. Desafortunadamente las cargas no lineales, tienen efectos indeseables en el suministro de corriente alterna requiriendo una cantidad importante de potencia reactiva inductiva con una corriente no senosoidal. En el sector industrial es mayor cada ves la instalación de variadores de Velocidad electrónicos para motores asincrónicos de jaula de ardilla debido a que requieren un bajísimo mantenimiento y son muy robustos. Además la gran parte de la iluminación de las empresas se realiza con lámparas de de descarga (Vapor de sodio, de mercurio, de alta o baja presión) con un factor de potencia muy bajo y una producción de perturbaciones eléctricas muy elevada.

La existencia de tales problemas constituyen una motivación que nos condiciona a la realización de un estudio para evaluar de la calidad del sistema de suministro de le empresa mecánica del níkel "Gustavo Machin Hoed de Beche" y proponer vías de solución a dichos problemas que aquejan a la entidad.

Como problema Fundamental tenemos que en esta empresa se han realizado varios proyectos anteriores donde se han analizado las principales deficiencias en este sistema de suministro industrial y se han propuesto medidas para erradicarlas. Las cuales no se han llevado a cabo, lo que atenta contra la calidad de la energía del sistema de suministro.

Tales deficiencias son:

Autor: Omar Figueredo Oliveros

Introducción 2

1 Compensación de reactivo

2 Sobrevoltaje

3 Circulación Armónica Producto de la presencia de Hornos de inducción y

arco eléctrico.

4 Pérdidas relacionadas por el bajo nivel de carga de un número considerable

de Subestaciones.

Para dar solución al problema planteado proponemos como objetivo General

determinar la eficiencia energética del sistema de suministro eléctrico y evaluar los

indicadores de calidad.

Como Objetivos específicos tenemos:

1 Establecer pérdidas y las reservas energéticas del sistema de Suministro.

2 Analizar el estado de la compensación de potencia reactiva.

3 Determinar los elementos o cargas que inciden en la calidad del suministro

asociado con la presencia de armónicos.

Como Hipótesis de investigación nos planteamos que si se determinan las causas

de las pérdidas de energía y afectación a la calidad del suministro entonces será

posible establecer mejoras al sistema obteniendo mayor calidad.

Entre las principales tareas están:

1. Actualización del esquema monolineal (características de las cargas)

2. Cálculo de los Flujos de Potencia en cuanto a:

1 Pérdidas

2 Variación de tensión

3 Factor de potencia.

3. Mejorar la Compensación de la potencia reactiva

4. Realizar mediciones de campo.

5. Propuestas de Criterios de calidad.

Con esta investigación se espera obtenerlos siguientes resultados:

Introducción 3

Validación de las mejoras realizadas en el sistema de suministro, determinar el estado actual de los índices de calidad relacionados con la tensión y distorsión armónica. Evaluar la efectividad de los bancos de compensación y proponer vías para las mejoras del sistema actual. Valoración económica de las variantes escogidas.

Capítulo 1. Caracterización de las redes de suministro industrial.

1.1 Introducción

En este capitulo se da a conocer una panorámica del estado actual de el arte de las redes industriales de suministro donde se abordó las principales características y problemas del suministro de energía de empresas mecánicas y metalúrgicas así como las principales normas y parámetros de calidad por las cuales nos se regirá el desarrollo de esta investigación.

1.2 Estado actual del arte relacionado con las redes industriales de suministro industrial, características de explotación y problemas más frecuentes.

En el trabajo desarrollado por el Grupo de Eficiencia Energética de Moa (GEEM) 2001,2002[18] se da a conocer los aspectos más importantes, vistos en el desarrollo del diagnostico energético efectuado en la Empresa Mecánica del Níquel "Cmdte. Gustavo Machin Hoed de Beche, con vista a la implantación de un sistema de gestión energética. Sus principales objetivos se muestran a continuación:

- Identificar potenciales de ahorro de energía.
- Proponer medidas o vías para el incremento de eficiencia energética.

Dichas medidas no han sido implementadas por dicha entidad.

En Cobas M. F. Pereira 2005[11], se dan a conocer las principales características y problemas de las redes de suministro eléctrico industrial en Cuba así como los parámetros de calidad, normas e indicadores por las cuales se rigen a la hora de realizar un Análisis de Calidad. También se muestran los efectos no deseados que insertan las cargas no lineales y el efecto que transfieren los diferentes equipos conectados al sistema (Armónicos, fliker, sobre tenciones, desbalances, entre otros)

En Parodi 2004[29] se determinan la posibilidad de utilización de filtrado activo en el horno de inducción del CMNI para la eliminación de armónicos. Quedó demostrada su factibilidad, ya que elimina los efectos indeseados del filtrado pasivo, pero en esta empresa no se justifica su uso por ser muy cara su utilización. Además muestra los principales contaminantes armónicos de la empresa.

En López 2004[24] se evalúa las principales deficiencias de este sistema de suministro y se proponen vías de solución. Se implementa el Dycse para la obtención de los flujos y se utiliza como herramienta de optimización del sistema obteniéndose resultados satisfactorios. Es el trabajo mas reciente que precede en esta tesis. La mayoría de sus propuestas de soluciones a los parámetros de calidad no han sido llevadas a cabo por dicha entidad.

En Pérez, 1994[30] se plantea la utilización de un algoritmo unificado para la optimización de la potencia reactiva, tomando como base la función objetivo con la utilización del método cuadrático sucesivo, en este trabajo se emplean capacitores y/o filtros pasivos para resolver el problema de la compensación de reactivo y al mismo tiempo cumplir con los límites de distorsión armónica recomendados por la IEEE-519. En este trabajo se parte de que el costo de los capacitores y filtros depende linealmente de su potencia (\$/kVar) y el modelo para la reducción de pérdidas se considera, la función objetivo VAN (Δx) tiene la forma:

$$VAN(\Delta x) = \Delta x^{T}(2d - A\Delta x).$$

La formulación matemática del problema se expresa a través de la siguiente ecuación:

 $maxVAN(\Delta x) = \Delta x^T (2d - A\Delta x)$ sujeta a las siguientes restricciones $U\Delta x \leq U$; $x + \Delta x \geq 0$ donde x representa la solución previa y Δx la variación óptima de x para la iteración corriente. Tradicionalmente los estudios de planificación de compensación de potencia reactiva en régimen permanente se realizan con una

6

estrategia de prueba y error, la cual está basada en estudios de flujos de potencia de casos base y de contingencias para las diversas condiciones de operación. La estrategia consiste en ubicar capacitores y/o inductores con el fin de lograr que en toda situación operativa los voltajes en el sistema se mantengan dentro de los márgenes preestablecidos.

En Grady, 1983 [17] las cargas no lineales dan lugar a la aparición de tensiones y corrientes no sinuosidades en la red en la que se encuentran conectadas. Para considerar las frecuencias de los armónicos, las corrientes y las tensiones han de expresarse en series de Fourier y por otra parte han de conocerse las expresiones analíticas que relacionan corrientes con tensiones para todas las cargas del sistema. Los módulos y argumento de las tensiones armónicas son incógnitas por lo que se necesitan ecuaciones adicionales.

En el trabajo presentado por González, 1999 [16] se describe una metodología para la minimización de las pérdidas de energía, basada fundamentalmente en la compensación de la potencia reactiva a través de la programación dinámica, teniendo en cuenta criterios económicos para la función objetivo partiendo de una función gasto a minimizar ($G = C + K_{ip}K = min$) y de las restricciones, aplicando el principio de optimalidad de Bellman, el cual permite, utilizar modelos como sistemas en etapas, considerando los niveles de tensión y las diferentes fuentes a considerar, lo que permitió hallar, una solución en un intervalo optimo, para las diferentes etapas analizadas., en este trabajo no tienen en cuenta cargas con características no lineales ni analiza los criterios de calidad, lo que limita su uso en el caso de redes industriales con esas características.

En Calvo y del Nuevo,1999 [13] define las tareas fundamentales con la que se enfrenta la electrónica de potencia y la conversión desde la tensión alterna de red a tensiones continuas con el menor rizado posible, y analiza que a medida que los

7

equipos han ido aumentando en potencia y número, surge otro problema: la distorsión que provoca en la red las corrientes demandadas por estos equipos.

Características de explotación y problemas más frecuentes

La generación es la producción de electricidad. Consiste en transformar en electricidad otras formas de energía. La producción de electricidad puede utilizar combustibles líquidos, gas natural, carbón, energía nuclear, energía hidráulica, combustibles renovables, turbinas de viento y tecnologías fotovoltaicas. Las distintas tecnologías tienen diferentes estructuras de costos. Los componentes principales del costo de generación de electricidad son el precio de los combustibles en el lugar de consumo, los costos de capital y los costos de mantenimiento y operación. Los costos dependen también del desempeño de la tecnología de generación (factor de capacidad, eficiencia térmica y vida útil

Desde hace unos años, se está registrando en todos los países industrializados una creciente sensibilidad hacia la "calidad del producto electricidad" o, dicho de otra forma, hacia la "calidad de la onda de tensión". Las alteraciones de la "calidad de la onda" tienen lugar en los propios procesos de producción, transporte y distribución, así como en su utilización por determinados tipos de receptores. Son, por lo tanto, inevitables. Sin embargo, sólo en los últimos años se están convirtiendo en un motivo de preocupación. Y ello, por dos causas:

- Por un lado, los procesos industriales requieren una mayor calidad de todos los productos utilizados y, en particular, de la electricidad, haciéndose más sensibles a las alteraciones que puedan existir.
- Por otro lado, la creciente utilización de receptores que generan perturbaciones hace que el nivel de contaminación general de las redes eléctricas esté aumentando, lo que puede así incidir en el normal funcionamiento de los demás receptores a ellas conectados y, en definitiva, extendiendo el problema.

Las propias empresas han de intentar reducir en lo posible el impacto de las alteraciones existentes, teniendo en cuenta la forma más correcta de utilizar los receptores que generan perturbaciones. Los fabricantes de equipos industriales tienen que diseñarlos y fabricarlos para que su utilización no altere la compatibilidad electromagnética entre la red a la que se van a conectar y los equipos a ella conectados. Los propios usuarios tienen que preparar y explotar sus instalaciones teniendo en cuenta las características de la red a la que se van a conectar, su entorno electromagnético y los requerimientos de inmunidad de sus propias instalaciones.

La energía eléctrica es suministrada en la forma de un sistema trifásico de tensiones de naturaleza sinusoidal. Hay cuatro parámetros que caracterizan a la onda de tensión y que permiten medir su grado de pureza:

- Frecuencia
- Amplitud
- Forma
- Simetría

La inyección de armónicos por cargas no lineales en las redes eléctricas de distribución produce una gran variedad de problemas que deterioran la operación eficiente de los equipos y sistemas eléctricos y electrónicos. La contaminación armónica se presenta como una distorsión de la forma de onda de tensión y corriente, ocasionando sobrecarga en condensadores utilizados para corregir factor de potencia, resonancia, interferencia en sistemas de comunicación, mal funcionamiento en sistemas de control, aumento de las pérdidas en las líneas y otros problemas referentes al diseño de los equipos y sistemas eléctricos y electrónicos. Para un país como Cuba que muy recientemente ha comenzado a preocuparse y ocuparse de la calidad del servicio de energía eléctrica, es recomendable llevar a cabo un estudio sistemático del fenómeno armónico con miras al desarrollo de una norma técnica apropiada que considere aspectos como:

Desarrollo de programas de medición, definiendo previamente criterios, metodologías adecuadas y equipos de medición (medición de tensión y corriente, orden de armónicos, valor instantáneo, medio, máximo), que permitan obtener resultados confiables y así poder fijar límites de distorsión armónica relativos al tipo y consumo del usuario,

- Construcción de modelos matemáticos que permitan el estudio del fenómeno y de los sistemas afectados
- ❖ Introducción de herramientas analíticas que permitan la predicción y la simulación de las distorsiones armónicas como parte de la planificación de los sistemas.

¿Por qué la importancia de este tema en la actualidad?

La industria actual posee una penetración de altísimo grado en cuanto a equipamiento electrónico de diversas generaciones, vinculados al control de procesos, accionamiento, procesamiento de datos, comunicaciones y transmisión de información, dispositivos domésticos y comerciales entre otros

En el mundo la electricidad se trata como una mercancía en un mercado con características peculiares, desde los centralizados hasta los desregulados, por ello, la definición de parámetros de calidad permiten determinar las características de competitividad del producto de determinado suministrador. Una insuficiente calidad en el suministro de la energía eléctrica afecta, en mayor o menor grado, a otras tecnologías y procesos industriales, donde las pérdidas económicas que se generan por este concepto pueden llegar a ser importantes. También provoca una operación ineficiente e impropia, entre otros, en las redes eléctricas, conducente a averías o incremento en los costos de operación, los que, al final, redundan en pérdidas para las empresas.

Algunas de las implicaciones de las deficiencias en la calidad del suministro eléctrico.

Con parámetros de tensión diferentes a los nominales o de trabajo ocurre la aceleración del envejecimiento del aislamiento de los equipos eléctricos, como consecuencia de un calentamiento más intensivo y, en una serie de casos como

resultado del reforzamiento de procesos de ionización. De aquí se deriva una intensificación de las tasas de averías.

Las desviaciones de tensión conllevan a un aumento del calentamiento de motores eléctricos con momentos constantes de carga (carga tipo transportador, elevador etc.), acelerando el envejecimiento del aislamiento. La elevación de la tensión por encima de la nominal conlleva a la disminución del tiempo de vida útil de lámparas

La asimetría en la tensión también conlleva al calentamiento adicional del equipamiento de fuerza y disminuye su vida útil. Este defecto también influencia negativamente en el funcionamiento de algunos esquemas de protecciones por relees, provocando operaciones erráticas y sacando de funcionamiento equipos. La aparición de variaciones rápidas en la asimetría de las tensiones trifásicas, características en circuitos donde están conectados hornos de acero por arco eléctrico, conllevan a la variación de los momentos de torque en los motores eléctricos, lo que es causa de aparición de esfuerzos adicionales en las cabezas de las bobinas de las máquinas, su vibración y tensiones de fatiga en elementos mecánicos constructivos del propio motor y el accionamiento, lo que trae como resultado una disminución de su tiempo de vida.

Las variaciones de la tensión actúan de diferente manera en los distintos tipos de equipamiento eléctrico. Por ejemplo, en las baterías de condensadores utilizados para la compensación de potencia reactiva provoca procesos transitorios que conducen a la sobrecarga de los condensadores por corriente y en casos por tensión, como resultado de lo cual la batería puede salir de servicio en un período, a veces, significativamente rápido en dependencia de la magnitud de la perturbación. En el caso de los motores las variaciones de tensión conducen al calentamiento adicional y a la variación del momento al eje. Los bajones de tensión para los motores asincrónicos tienden a frenarlos y a procesos de rearranques, pudiendo llegar a situaciones de disparo de protecciones, sobretodo, cuando trabajan simultáneamente grupos de motores.

La práctica ha demostrado el incremento del error en las lecturas de metros contadores de energía del tipo de inducción ante la presencia de armónicos, además de daños mecánicos producidos por los armónicos de orden 3n+2 cuando estos son significativos, lo que recomienda la no utilización de este tipo de metro en redes o consumidores contaminados.

La reducción de la frecuencia conduce a una disminución de la productividad de los accionamientos eléctricos, al trabajo inestable de equipos electrónicos, de mediciones y de sistemas de protecciones. En las centrales termoeléctricas tiene también influencia en las vibraciones de las turbinas, las que tienen bandas estrictas de variaciones admisibles de este parámetro.

La experiencia de los sistemas industriales ha demostrado una dependencia entre la disminución de la confiabilidad y la disminución de los parámetros de calidad del suministro eléctrico. La disminución de la tensión en determinados niveles trae como consecuencia el aumento de las demandas de potencia reactiva de los equipos eléctricos, esto conduce al aumento de las pérdidas de energía en las redes y al empeoramiento progresivo de las condiciones de tensión. Hay que tener presente que los armónicos superiores en los sistemas implica el aumento de pérdidas en las líneas y la aparición de posibles condiciones de resonancia que provocan sobre tensiones permanentes y transitorias en eventos de conmutación.

1.3 Calidad de la energía Indicadores y normas

La electricidad como forma de energía

• En el Complejo Energía-Combustible la forma de energía más versátil es, indudablemente, la energía eléctrica, lo que está dado por la facilidad de su uso en cualquier proporción, su accesibilidad y posibilidad de conversión, de manera relativamente sencilla, a otros tipos de energía. A ello es preciso agregar la facilidad de su transportación económica a grandes distancias y en

grandes bloques, todo lo que le ha dado, desde la época de su primera implementación práctica, una preferencia indiscutible y un lugar sin competencia en la vida que llamamos moderna.

¿Qué parámetros se incluyen en el concepto de Calidad?:

- · Confiabilidad del servicio
- Desviaciones de la frecuencia
- Desviaciones y fluctuaciones tensión
 - Desviaciones de la tensión nominal o de trabajo
 - Fluctuaciones rápidas de la tensión (flicker)
 - Modulaciones en la onda de tensión
 - Sobre tensiones
- Distorsión de la onda de tensión y corriente
 - Contenido de armónicos superiores en las ondas de Tensión y corriente
- Asimetría de las tensiones trifásicas

Indicadores de la Calidad de la Energía y su cálculo

Desviación de la tensión (fluctuación lenta)

$$\Delta U = \frac{U - U_{Nom}}{U_{Nom}} \bullet 100$$

Fluctuación rápida de tensión (parpadeo, flicker)

$$Pst = (0.0314P_{0.1} + 0.0525P_1 + 0.0657P_3 + 0.28P_{10} + 0.08P_{50})^{\frac{1}{2}}$$

Pst - Indice de severidad del flicker de corta duración

P0.1, P1, P3, P10, P50 - niveles de efecto flicker que se sobrepasan durante el 0.1%, 1%, 3%, 10%, 50% - del tiempo total del período de observación

> Caída de tensión

por debajo del 90% del Uref caracterizado por la magnitud efectiva y la duración.

 $\Delta t \prec T/2$ Transitorias

 $T/2 \prec \Delta t \prec 30T$ Instantáneas

 $30t \prec \Delta t \prec 3s$ Momentáneas

 $3s \prec \Delta t \prec 1 \min \text{ Temporales}$

 $\Delta t > 1 \min$ Sostenidas

Distorsión de la onda de tensión (o corriente)

$$U^{'}_{i} = \frac{U_{i}}{U_{Nom}} \bullet 100 \,\,\, {
m Valor}$$
 porcentual de la tensión del armónico i

Thd =
$$\frac{(\sum_{2}^{40} (U_i)^2)^{\frac{1}{2}}}{U}$$

Ui - valor efectivo de los armónicos superiores

> Asimetría de la tensión.

$$K_2 = \frac{100 \bullet U_2}{U_1}$$
 Coeficiente de secuencia negativa

$$U_{1} = 0.33(U_{AB} + U_{BC} + U_{CA})$$
$$U_{2} = 0.62(U_{DMAX} - UD_{DMIN})$$

 U_{DMax} y U_{DMin} mayor y menor desbalance entre las magnitudes de tensión

$$K_0 = \frac{173U_0}{U_1}$$
 Coeficiente de secuencia cero

Normas para valorar la Calidad del Suministro de Energía Eléctrica

En Cuba:

Normal + 0.2; - 0.3 Hz

Máximo +0.4 ; - 0.4 Hz

Las desviaciones de tensión: +10%; - 10%

Las normas establecidas por el IEC al respecto son:

IEC 60050-161, IEC 61000-2-1,IEC 61000-3-2,IEC 61000-3-6,IEC 61000-3-7, EC 61000-4-7, IEC 61000-4-13, IEC 61287-2-TS, IEC 61642, IEC 61786

En ellas se han considerado los siguientes fenómenos perturbadores:

- Armónicos
- Interarmónicos
- Fluctuaciones de tensión
- Caídas de voltajes e interrupciones cortas del suministro
- Desbalances de tensión
- Señales principales
- Variaciones de frecuencia
- Componentes de CD en los sistemas de AC

Nivel de calidad del suministro eléctrico.

La IEC 60050-161 establece como compatibilidad electromagnética, a la habilidad de un equipo o sistema de funcionar satisfactoriamente en su entorno electromagnético sin introducir perturbaciones electromagnéticas intolerables a nadie en ese entorno.

Una vía de asegurar los niveles de compatibilidad es especificar los límites de emisiones del usuario con suficiente margen por debajo de los niveles de compatibilidad, lo que es posible en las instalaciones grandes según IEC 61000-3-6 e IEC 61000-3-7. En baja tensión se establecen límites de emisión para familias de equipos (IEC 61000-3-2).

A partir de los niveles de inmunidad del equipamiento se pueden esperar niveles apropiados de comportamiento del sistema a perturbaciones en diferentes clases de entornos electromagnéticos, como por ejemplo podría ser, sólo con propósitos indicativos (no como norma):

Perturbación	Clase1	Clase2	Clase3
Variación de tensión .U/Un	+- 8%	+-10%	+10% -15%
Caída de tensión			
ΔU/Un	10%-100%	10%-100%	10%-100%
Δt (cantidad de semiciclos)	1	1-300	1-300
Interrupciones cortas	ninguna	-	<= 60
Desbalances (U2/U1)	2%	2%	3%
Variaciones de frecuencia. f/fn	+-1%	+- 1%	+-2%

Es muy utilizada la norma IEEE-519-92[28] referente a la emisión de armónicos de tensión que establece las siguientes prescripciones en la Tabla 1.3.1:

Tabla 1.3.1 Niveles límites de THD (V).

Tensiones	Distorsión de la tensión en los Armónicos individuales, % THD, %	Distorsión total
Hasta 69 kV	3.0	5.0
69-161 kV	1.5	2.5
Mas de 161 kV	1.0	1.5

Para bajas tensiones se establecen valores normativos mayores que los arriba indicado, siendo los valores máximos del THD(V) hasta 1kV de 6% para los impares y 3% para los pares.

Tabla 1.3.2 Límites de Distorsión de tensión para los diferentes armónicos.

ORDEN (n) DE LA ARMONICA Y THD	TOLERANCIA V _i ' o THD' (% respecto al voltaje nominal del punto de medición)		
ARMONICATINO	V > 40 kV (otros puntos)	V ≤ 40 kV (trafos de distribución)	
impares no múltiplos de 3	Para-Salar Salar Salar		
5	2.0	6,0	
7	2.0	5.0	
11	1.5	3.5	
13	1.5	3.0	
17	1.0	2.0	
19	1.0	1.5	
23	0.7	1.5	
25	0.7	1.5	
> 25	0.1 + 0.6*25/n	0.2 + 1.3*25/n	
Impares múltiplos de tres			
3	1.5	5.0	
9	1,0	1.5	
15	0.3	0.3	
21	0.2	0.2	
Mayores de 21	0.2	0.2	
Pares			
2	1.5	2.0	
. 4	1.0	1.0	
6	0.5	0.5	
8	0.2	0.5	
10	0.2	0.5	
12	0.2	0,2	
Mayores a 12	0.2	0.5	
THD	3	8	

Tabla 1.3.3 Límites de Distorsión de Corriente para Sistemas de Distribución en General (desde 120 V hasta 69.000 V)

Máxima D	istorsión de	Corriente A	Armónica			
en Porcen	taje de <i>I∟</i>					
Orden Arr	nónico Indiv	ridual (Armó	nicos Impa	res)		
I _{sc} / I _L	h < 11	11≤h<17	17≤h<23	23≤h<35	35≤h	TDD
<20 [*]	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

1.4 Principales características de las cargas en los sistemas de suministros en empresas mecánicas y metalúrgicas.

La industria metalúrgica por sus características y los equipamientos que utilizan, está asociada al grupo de procesos industriales considerados como grandes consumidoras de energía. Existen consumidores altamente contaminantes de la red, al tener equipos, en muchos casos de envergadura, que significan cargas alinéales, grandes generadoras de armónicos, tales son los casos de los hornos de fundición por arco eléctrico, los equipos de soldadura por arco, los equipos numéricos, los equipos de cómputo, los laminadores, etc

A continuación presentamos la tabla 1.4.1 con los principales consumidores de una empresa metalúrgica y la afectación que trae en ellos la baja calidad del suministro eléctrico. Tomado de Cobas M. P. 2005. [11].

Tabla 1.4.1 Afectación en las principales cargas de empresas metalúrgicas atendiendo a los parámetros de calidad de la energía.

Equipamiento	Depresiones de tensión <0.5s >0.5s	Sobretensiones	Armónicos	Desbalance	Fluctuaciones de tensión
Motores asincrónicos					
Motores sincrónicos					
Actuadores					
Acc <mark>i</mark> onamiento de velocidad			40		
Dispositivos de procesamiento de datos, control numérico					
Hornos de inducción					
lluminación					
Bancos de capacitores					
Transformadores					
Inversores					
Interruptor					
Cables					
Leve					
Medio					
Alto					

Muy alto

1.5 Conclusiones

- Se mostró las principales normas de calidad de la energía por las cuales nos regiremos para realizar esta investigación.
- Quedó evidenciada las severas afectaciones que pueden tener las cargas por la baja calidad del sistema de suministro.
- Se realizó una revisión de los trabajos precedentes en esta entidad y las mejoras que plantean al sistema.

Capítulo 2. Caracterización del Sistema de Suministro de la EMNI

2.1 Introducción

El objetivo básico del siguiente Capitulo es caracterizar el sistema de suministro eléctrico de la Empresa, actualización de su monolineal, describir las instalaciones actuales del objeto de estudio, describir las características de las cargas lineales y no lineales, obtención del flujo de potencia a la frecuencia fundamental y armónica, todo esto para determinar las causas negativas que influyen en la mala utilización de la energía. Este análisis parte de los estudios ya realizados; López 2004[24], Colomé 2001[12] y (GEEM) 2000,2001[18]. Hornos y compresores actualmente, llegando a conclusiones definitivas de identificación del problema y se propondrán nuevas medidas en busca de mejoras.

2.2 Caracterización General del esquema de suministro de la Empresa CMNI y sus cargas asociadas (Lineales y no Lineales)

Holguín esta situada en la zona oriental de territorio nacional, donde se encuentran los mayores yacimientos laterítas niquelíferas que se han descubierto en Cuba. La producción de Níquel en nuestro país es uno de los renglones que mas aporta a la economía, ocupando un lugar importante a nivel mundial en cuanta a reservas geológicas, calidad del mineral y cantidad de exportación conjuntamente con variedades presentes en el mineral como el sulfuro, óxido y sinter.

Como consecuencia de este gran desarrollo de la rama metalúrgica en la provincia, surge la necesidad de poner en marcha La Empresa Mecánica del Níquel, creada fundamentalmente para dar solución a los problemas de elaboraciones y reparaciones mecánicas de las en las plantas metalúrgicas: Moa Níquel S.A Pedro Sotto Alba, Comandante Ernesto Che Guevara, ambas del municipio de Moa, la Comandante Rene ramos La tour de Nicaro y de la que esta en proceso de ejecución Yamaniguey S.A

Dicha entidad se ocupa de las actividades de diseños especializados y fabricación de elementos y conjuntos mecánicos, empleo de equipamiento especializado cuyo rendimiento se correspondan con las necesidades y condiciones adecuadas para obtener unificación de conjuntos y piezas a través de la normalización.

Producciones que se pueden obtener en la Empresa

- Fabricación de construcciones metálicas, componentes y equipos mecánicos.
- La fabricación de piezas y conjuntos por la elaboración mecánica en máquinas herramientas.
- Fabricación de 3 artículos técnicos de goma.
- Recuperación de elementos mecánicos desgastados.
- Fabricación y recuperación de herramientas, dispositivos, plantillas metálicas y otros aditamentos.
- Elaboración de forja.
- Elaboración por fundición de metales ferrosos y no ferrosos y sus aleaciones.
- Tratamiento térmico y galvanotecnia.
- Reparación capital de equipos automotores y de sus unidades y conjuntos.
- Reparación capital de equipos eléctricos (transformadores, motores eléctricos, interruptores).
- Verificación y reparación metrológica de equipos e instrumentos de medición.
- Producción de gases industriales (oxígeno, acetileno).

Características técnicas fundamentales

En la Empresa se realizan producciones que se caracterizan por ser de pequeñas, medianas y grandes formatos y unidades, pero de pequeñas serie, se han automatizado con tecnología moderna en casi todos los talleres, no en su totalidad pero ya se cuenta con algunos autómatas que realizan producciones en serie, el resto del equipamiento son máquinas y equipos universales y otras máquinas especiales que garantizan en gran medida la mecanización..

Sistema de alimentación Eléctrico de la Empresa

La recepción y distribución de la energía eléctrica en la Empresa Mecánica del Níquel, se realiza a través de un sistema radial integrada por la subestación reductora principal de 33/10.5 KV conectada a la red nacional. Esta suministra la energía eléctrica a las nueve subestaciones interiores y puntos de distribución. En los talleres de fundición existen escalones de 10.5 – 6 - 0.48 kV para la alimentación de los hornos que trabajan a través de convertidores de elevada frecuencia. Ver *anexo* (3) Monolineal general de la Empresa.

En la tabla 2.2.1 se muestran las características de los trasformadores de entrada y de los trasformadores de uso de las plantas.

Tabla 2.2.1 Datos nominales de los trasformadores

Datos de los trasformadores	Entrada	Talleres
Tipo de trasformador	TDHC 10000/35	TME 1000/10
Tensión Nominal kV	34.5/10.5	10.5/0.48
Pot. Nominal del Transf. KVA	10 000	1000
Corriente nominal A	175/549.8	
Pérdidas de pot. En vacío kW	10.3	2.5
Pérdidas de Pcc kW	56.4	12.2
Tensión de cortocircuito %	9.55	5.5
Corriente de marcha en vacío %	0.21	1.4
Coef. Incre. de Pérd. kW/kVAr	0.1	0.15

Costo del transformador MP	10.33	2.32
Conexión	Υ/Δ	Δ/Y aterrada
Cantidad	2	19

La tabla 2.2.2 muestra los transformadores subcargados de la Empresa, en ella se observa el nivel de utilización de estos, ubicación, conexión y como la misma ilustra, en la entidad existen 21 transformadores de fuerza, de ellos 18, se encuentran al 30 % o menos de capacidad. No obstante, 16 de ellos cuentan con la posibilidad de enlazarse con otros transformadores, lo que permite un uso más adecuado.

Tabla 2.2.2 Transformadores subcargados.

No	Transformador	Ubicación	Lugar	Carga %	Con enlace
1	1 de 10 MVA	SER	SER	15	-
2	2 de 10 MVA	SER	SER	15	-
3	1 de 1 MVA	CC1	T06	15	-
4	1 de 1 MVA	CC2	T04	15	30
5	1 de 1 MVA	CC3	T04	15	30
6	1 de 1 MVA	CC3	T04	20	30
7	1 de 1 MVA	CC4	T07	20	30
8	1 de 1 MVA	CC5	T07	25	30
9	1 de 1 MVA	CC5	T07	25	30
10	1 de 1 MVA	CC6	T08	25	30
11	1 de 1 MVA	CC6	T08	25	30
12	1 de 1 MVA	CC7	T08	25	30
13	1 de 1 MVA	CC7	T08	25	30
14	1 de 1 MVA	CC8	Oxigeno	30	-
15	1 de 1 MVA	CC8	Oxigeno	30	-
16	1 de 1 MVA	CC9	Compres.	35	-
17	1 de 1 MVA	CC9	Compres.	35	-
18	1 de 1 MVA	Acero1	Fundición	50	-
19	1 de 1 MVA	Acero2	Fundición	50	-
20	1 de 1.25 MVA	Arco	Fundición	100	-

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel. **Autor:** Omar Figueredo Oliveros

21	1 de 1 MVA	Hierro	Fundición	100	-

Caracterización de las cargas con característica no lineal (Horno de Acero 1 y Horno de Acero 2).

En esta empresa tenemos gran variedad de máquinas generadoras de armónicos que distorsionan o perturban la estabilidad del sistema, en este caso tenemos a los hornos de inducción, horno de arco eléctrico y las máquinas de soldar que debido a su no linealidad como los principales generadores de armónicos no deseados. A continuación relacionamos e ilustramos las características de ellos.

Horno de inducción para la fundición de aceros (Horno 1).

Aleaciones tipo:

- Aceros al manganeso.
- ❖ Aceros al Cr Ni.
- Aceros de baja y alta aleación.

Características de las instalaciones actuales:

*	Capacidad de colada	1000 Kg
*	Temperatura de colada	1650 - 1700 °C
*	Frecuencia.	
	Circuito del Inductor	1310 Hz.
	Circuito de alimentación del Convertidor.	60 Hz.
*	Tensión	
	Tensión de Salida del Convertidor	1600 V.
	Tensión nominal de la Batería de Condensadores	2000 V.
	Tensión del Circuito de Alimentación	440 V.
	Tensión del Circuito de mando	220 V.
*	Tiempo de colada	Máx. 1.5 horas.

❖ Potencia del Convertidor
 ❖ Potencia nominal reactiva de la Batería de Condensadores
 ❖ Corriente nominal
 ❖ Peso del horno
 568 kW.
 9000 kVar.
 313 A.
 ❖ Peso del horno

Horno de inducción para la fundición de aceros (Horno 2).

Aleaciones tipo:

- Aceros de baja aleación.
- Aleaciones base cobre
- Aceros de alta aleación.

Características de las instalaciones actuales:

*	Capacidad de colada	450 Kg
*	Temperatura de colada	1650 - 1700 °C
*	Frecuencia.	
	Circuito de alimentación del Convertidor,	60 Hz.
	Circuito del Inductor	2880 Hz.
*	Tensión	
	Tensión del Circuito de Alimentación	440 v.
	Tensión del Circuito de inductor	1600 ⁺¹⁰⁰ v.

Tiempo de colada, Máximo. 1.22 Horas
 Potencia nominal reactiva de la Batería de Condensadores
 Corriente nominal
 Potencia del Convertidor
 264 A.
 Potencia del Convertidor

La tensión de alimentación consta de una Subestación de 10 kV. y un transformador de 10kV a 6kV.

En dicha empresa se hizo un levantamiento donde se actualizó el monolineal con todas las cargas lineales y no lineales y sus principales características nominales

para realizar el flujo de cargas a frecuencia Fundamental y Armónica. (Ver anexo 2).

Esta entidad cuenta con bancos de condensadores fijos de 135 kVar y automáticos de 80 kVar los cuales no están bien calculados y producen sobrecompensaciones y algunos fueron descontinuados por las sobretenciones que introducían al sistema.

En la tabla 2.2.3 se muestra los condensadores que están en funcionamiento en estos momentos:

Tabla 2.2.3 Bancos de condensadores en uso por cada centro de carga.

Centro de Carga	Bancos Fijos (kVar)	Bancos Automáticos (kVar)
1	-	80
3	2 * 135	-
5	135	80
8	135	-

Características de los condensadores automáticos:

80 kVar con bloques de 40 kVar, 20 kVar, 10 kVar, 10 kVar

2.3 Flujo de potencia a frecuencia fundamental.

Importancia de los flujos de carga

- Permite determinar los flujos de potencia activa y reactiva en una red eléctrica.
- Permite determinar los voltajes en las barras de una red eléctrica.
- Permite calcular las pérdidas en una red eléctrica.
- Permite estudiar las alternativas para la planificación de nuevos sistemas o ampliación de los ya existentes.
- Permite evaluar los efectos de pérdidas temporales de generación o de circuitos de transmisión.

- Permite evaluar los efectos de reconfigurar los circuitos de un Sistema Eléctrico de Potencia (SEP) (por ejemplo ante la pérdida de una línea de transmisión).
- Permite evaluar las mejoras que se producen ante el cambio en la sección de los conductores de un SEP.

En la literatura se hace referencia a varios métodos para resolver el flujo de carga, entre ellos se encuentran:

- Método de Gauss-Seidel.
- Método de Newton-Raphson y su versión desacoplada
- Método de inyección de corriente

En la presente tesis para calculo del Flujo de potencia a frecuencia fundamental y armónica se utilizara el programa Dycse [23], en el mismo se implementa un algoritmo iterativo por Gauss Seidel para determinar las tensiones para todos los nodos del sistema y luego calcular los flujos de potencia en cada barra de cada subestación.

Las fórmulas utilizadas en el flujo de potencia se realizan a través de ecuaciones algebraicas no lineales y de las restricciones del sistema. Estas restricciones representan a las leyes de Kirchhoff y los límites de los parámetros de operación de la red.

Para lograr la convergencia se implementó un procedimiento para determinar los valores del factor de aceleración, el mismo solo dependerá de la configuración del esquema analizado.

En cada nodo estarán asociadas las siguientes variables:

 θ_k – Angulo de tensión del nodo k

Q_k – Potencia reactiva neta del nodo k (Suma algebraica de generación y carga)

U_k – Magnitud de de tensión en el nodo k

P_k – Potencia activa neta del nodo k (Suma algebraica de generación y carga)

El tipo de nodo, está en dependencia de las cuatros variables anteriormente citadas y si estas son conocidas o no, partiendo de esto se clasifican en tres tipos básicos de nodos.

Nodo tipo carga (PQ): P_k y Q_k son dados; U_k y θ_k son calculados

Nodo de generación (PU): P_k y U_k son dados; Q_k y θ_k son calculados

Nodo de compensación: U_k y θ_k son dados; Pk y Qk son calculados

Este último tipo de nodo se le suele llamar de referencia o nodo slack, teniendo una doble función, la primera es la de servir como referencia en el ángulo de voltaje y la segunda es suplir la potencia requerida por el sistema eléctrico para su balance.

Las conexiones en la red se describen mediante números en código pn asignados a cada barra. Estos números especifican los terminales de líneas ó cables en códigos numéricos para identificar los diferentes tipos de barras.

La formulación matemática del problema de corridas de flujos, resulta en un sistema de ecuaciones no lineales; éstas están establecidas en los modelos de referencia de los nodos.

En cada nodo del sistema se tendrán dos incógnitas y dos ecuaciones. Así para una red de n nodos se planteará un sistema de 2(n-1) ecuaciones no lineales con 2(n-1) incógnitas resolviéndose el sistema mediante un proceso iterativo, donde se seleccionan los valores iniciales de tensión y se repite la operación hasta alcanzar la convergencia.

El cálculo de los elementos de la matriz de admitancia Y nodo se realiza a partir de las impedancias serie y paralelo correspondiente en cada caso, donde los elementos de la diagonal son las admitancias entre los nodos p y q y tienen signo negativo.

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} Y_{11}Y_{12}Y_{13} \\ Y_{21}Y_{22}Y_{23} \\ Y_{31}Y_{32}Y_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$
2.3.1

El cálculo del voltaje se realizará según la siguiente expresión. IEEE. Std 399-1997[68] por el método de Gauss –Seidel.

$$V_p^{(m)} = \frac{1}{Y_{pp}} \left(\frac{P_p - jQ_{pi}}{V_p^{*(m)}} - \sum_{q=1}^{p-1} Y_{pq} V_q^{(m)} - \sum_{q=p\neq 1}^{N} Y_{pq} V_q^{(m-1)} \right)$$
 p=1,2,...., N-1 2.3.2

Donde:

N - Número de nodos del sistema

m - Número de la iteración

p y q - subíndices de los nodos

V y Y - Voltaje y admitancia compleja, respectivamente

V* - conjugado de la tensión compleja

Los flujos de potencia en las líneas se calculan a partir de los voltajes finales obtenidos en cada nodo utilizando las admitancias de las líneas de acuerdo a las siguientes ecuaciones:

$$P_{pq} - jQ_{pq} = U_p^{\bullet} (U_p - U_q) Y_{pq} + U_p^{\bullet} U_p Y_{pp}$$
 2.3.3

$$P_{qp} - jQ_{qp} = U_q^{\bullet} (U_q - U_p) Y_{pq} + U_q^{\bullet} U_q Y_{qq}$$
 2.3.4

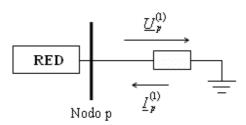


Fig.2.3.1 Nodo con carga lineal

$$\underline{I}_{p}^{(1)} = \sum_{q}^{n} \underline{Y}_{pq}^{(1)} \underline{U}_{q}^{(1)}$$
 2.3.5

$$\underline{S}_{p}^{(1)} = \underline{U}_{p}^{(1)} \underline{I}_{p}^{(1)^{*}} = \underline{P}_{p}^{(1)} + j \underline{Q}_{p}^{(1)}$$
 2.3.6

$$\underline{P}_{p}^{(1)} + j\underline{Q}_{p}^{(1)} = \sum_{q=1}^{n} \underline{Y}_{pq}^{(1)} \underline{U}_{q}^{(1)} \underline{U}_{p}^{(1)}$$
2.3.7

2.3.1 Flujo de potencia a frecuencia armónica.

El flujo de potencia con interacción armónica se define, como una extensión del flujo de carga convencional anteriormente descrito, a las frecuencias de los armónicos. El análisis del flujo armónico de carga pretende obtener la tensión armónica de todos los nodos de la red industrial y los parámetros que caracterizan a los dispositivos no lineales.

En los nodos no lineales, una parte de la potencia absorbida por la carga no lineal se convierte en potencia útil y en pérdidas de potencia activa, mientras que el resto se convierte en corrientes de frecuencia armónica que son inyectadas por la carga no lineal a la red.

En cada una de las frecuencias armónicas se puede considerar que la carga no lineal se comporta como una fuente de corriente de valor I(k) cuyo valor depende de la tensión en sus propios bornes. La intensidad armónica por la carga no lineal provoca caídas de tensión en la líneas y en los elementos del sistema.

La tensión en cada uno de los nodos estará compuesta por la tensión fundamental y las tensiones armónicas, por lo tanto, ambas tensiones estarán distorsionadas. Las corrientes inyectadas dan lugar también a pérdidas de potencia en los elementos del sistema. Debe tenerse en cuenta, que las corrientes armónicas inyectadas por la carga no lineal dependen de la forma de onda de tensión en los bornes de la carga, a esta dependencia se le conoce como interacción armónica.

En este tipo de nodo el tratamiento es similar al del armónico fundamental con la diferencia que se representa como una fuente de corriente, que depende de la tensión a los diferentes armónicos, así como de los parámetros de control: ángulo de disparo α y ángulo de conmutación δ .

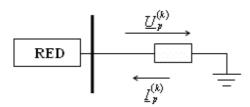


Fig. 2.3.2 Nodo con característica no lineal Donde

$$\underline{I}_{p}^{k} = \underline{F}_{p}^{k} \left(\underline{U}_{p}^{(1)}, \dots, \underline{U}_{p}^{k}, \quad \alpha_{p}, \delta \right)$$
 2.3.8

donde:

 α_n , δ son el ángulo de disparo y conmutación respectivamente.

Para la determinación de la matriz $[\underline{Y}^{(k)}]$ armónica partimos del cálculo de los parámetros en cada elemento del sistema.

Se define la matriz admitancia de la red a la frecuencia fundamental como:

$$\underline{Y}_{nodo} = \underline{G}_{nodo} + j\underline{B}_{nodo}$$
 2.3.9

y para el caso de un armónico

$$\underline{Y}_{nodo}(k) = \underline{G}_{nodo}(k) + j\underline{B}_{nodo}(k)$$
 2.3.10

(k) Valores para diferente armónico

Donde:

$$\underline{Y}_{nodo} = \underline{Y}_{pq}(k) = \underline{G}_{pq}(k) + j\underline{\underline{B}}_{pq}(k)$$
 2.3.11

Matriz admitancia \underline{Y} pq entre nodos p y q, para los armónicos k de la red.

Tensión armónica de cada nodo p de la red para un armónico k esta dada por:

$$\underline{V}_{p}(k) = V_{t}(k) \angle \theta_{t}(k) = V_{p}(k) \left(\cos \theta_{p}(k) + j\sin(\theta_{p}(k))\right)$$
 2.3.12

Para determinar la corriente en el nodo se puede plantear

$$\underline{I}_{nodo} = \underline{Y}_{nodo} \underline{V}_{nodo}$$
 2.3.13

La potencia activa y reactiva inyectada en el nodo p de la red será igual a:

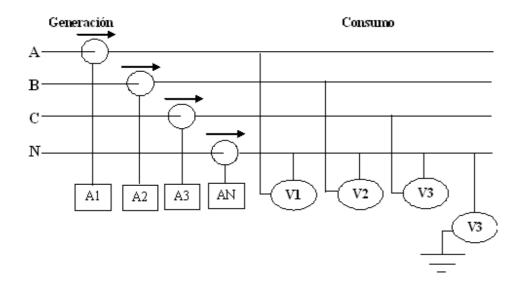
$$\underline{S}_p = \underline{P}_p + jQ_p = \underline{V}_p \underline{I}_p^*$$
 2.3.14

2.4 Resultados de las mediciones de Campo. Análisis y Caracterización del Funcionamiento

Caracterización del analizador de RED digital (INTERLOGGER).

El diseño del INTERLOGGER se ha basado en una gran experiencia dentro del campo de los registradores de tensión y de potencia.

El registrador es un sistema analizador trifásico de tensión y corriente capaz de medir el contenido de armónicos y demás parámetros RMS(valores efectivos) de cada una de las fases. Empleando un complejo algoritmo matemático. Este


analizador puede mostrar, porcentualmente, el contenido armónico de la distorsión armónica total en cada fase de tensión y corriente. La mayorías de las mediciones pueden ser leídas en display del aparato, mientras que los datos registrados pueden ser volcados en un (PC) vía puerto serial, o mediante la tarjeta de memoria (PC MCIA). Este aparato se alimenta de la línea en todo su rango de medida y la batería recargable mantiene la información registrada en caso de fallo de tensión. Todas las entradas van separadas galvánicamente y protegidas por varistorees y fusibles. La unidad completa bien alojada en una caja hermética al agua y dispuesta para ambientes hostiles.

Tipos de conexiones:

El Interlogger puede utilizarse para visualizar todos los tipos de líneas eléctricas más comunes. A continuación se mencionan cinco de los montajes más usuales en el campo de la especialidad.

El tipo de conexión que utilizamos para medir con el analizador de red en los centros de cargas del Combinado Mecánico fue (Línea trifásica a 4 hilos). Este instrumento nos da la posibilidad de medir en otros tipos de conexión como:

- ★ Línea trifásica a 3 hilos
- ★ Línea monofásica a 3 hilos (conexión Edison)
- ★ Fase única a 2 hilos
- ★ $2\frac{1}{2}$ elemento vatimétricos
- ★ Lineas trifásica a 4 hilos (con el neutro desconectado)

Cálculos en le INTERLOGGER

Tanto la onda de tensión como la de corriente se muestran 128 veces por ciclo o periodo completo (20 ms con la frecuencia de 50 Hz). Dicho muestreo se realiza de forma simultánea en todos los canales de tal forma que no se produzcan sesgos de la información entre canales.

Las componentes de Fourier para cada canal se calculan a partir de los datos muestreados utilizando la fórmula:

$$A_{n} = \frac{2}{N} * \sum_{i=1}^{N} fi * \cos\left(\frac{2 * \Pi * n * i}{N}\right)$$

$$B_{n} = \frac{2}{N} * \sum_{i=1}^{N} fi * sen\left(\frac{2 * \Pi * n * i}{N}\right)$$

Siendo: N = número de muestras

fi = muestreo #i

n = número de armónico

Los valores RMS displayados y memorizados en el registrador utilizan cada uno un muestreo, es decir, N=64. En consecuencia, el registrador calcula valores para n=1.....15. Todos los cálculos FFT realizados por el Software, Data Trend, utilizan 128 muestra (N=128) en el cálculo de valores para n=1....50.

Las magnitudes RMS se han calculado, obteniendo la raíz cuadrada de la suma de los cuadrados de las componentes:

$$V_{\text{rms}} = \sqrt{(V_{A1})^2 + (V_{B1})^2 + (V_{A2})^2 + (V_{B2})^2 + \dots + (V_{A50})^2 + (V_{B50})^2}$$

La potencia activa (vatios) se calcula:

$$P = V_{A1} * I_{A1} + V_{B1} * I_{B1} + V_{A2} * I_{A2} + V_{B2} * I_{B2} + + V_{A50} * I_{A50} + V_{B50} * I_{B50}$$

La potencia aparente se calcula:

La potencia reactiva (Vars) se calcula:

$$Q = \sqrt{VA^2 - P^2}$$

La distorsión armónica total se calcula:

$$V_{THD\%} = \sqrt{\frac{(V_{A2})^2 + (V_{B2})^2 + (V_{A3})^2 + (V_{B3})^2 + \dots + (V_{A50})^2 + (V_{B50})^2}{(V_{A1})^2 + (V_{B1})^2}}$$

El factor de potencia se calcula:

$$\mathsf{PF} = \frac{P}{VA}$$

Resultado de las mediciones de campo

Se realizaron mediciones en 24 horas continuas con un intervalo de 8 minutos, en cada centro de carga de la empresa obteniéndose los resultados que se muestran en el *anexo* (4) donde se pudo llegar a las siguientes conclusiones:

- ❖ Las sobre tensiones no sobrepasaron en ningún Centro de Carga (CC) el 4% de 10% que se tiene como norma, aunque esto es perjudicial ya que incrementa las pérdidas y deterioro de aislamiento.
- ❖ Todos los transformadores de los CC están subcargados, 15% los que no posen enlace con otros CC y 30% los que si lo poseen

- ❖ Bajo Factor de potencia en los CC 1, 2 y 3, 6 y 7 (por debajo de 0.86)
- El Total de distorsión armónica THD (V) sobrepasa el 5% el los CC 2 y 3, 8, 6 y 7, Hornos.
- En los CC 2 y 3, 5, 8 existen sobrecompensaciones lo que mostró un mal cálculo y diseño de los bancos de condensadores.

2.5 Análisis de los flujos Fundamental y armónico de la empresa

Estructura de los centros de carga para el análisis del flujo de potencia

En la tabla 2.5.1 se define la configuración los centros de carga, la distribución de los nodos y en estos la estructura por talleres. Para una mejor comprensión de la distribución nodal, ver *anexo* (3).

Tabla 2.5.1 Alimentación de los talleres por los centros de carga

Centros de carga	Nodos	Departamentos y talleres	
1 TP	25	Taller estructuras metálicas (T-06)	
2 TP,3 TP	28, 33, 31	Taller de Rep.Cap.Eléctrica (T-05)	
		Taller de Rep.Cap.Automotrices (T-04)	
4 TP, 5 TP	23,26,34	Taller mecánico (T-07)	
6 TP, 7 TP	20,22,24,35,36,37,3	Taller de fundición (T-08)	
	8		
9 TP	29,30	Compresores, Bombas, plantilleria,	
		residuales, carpintería, escuela de	
		soldadura, almacenes, acetileno.	
8 TP	27, 25	Oxigeno, taller 14 y 15, cocina comedor.	

En la tabla 2.5.2 y 2.5.3 se muestran los resultados de factor de potencia y el flujo de potencia arrojados por el software Dycse con los datos actuales de la empresa.

Tabla 2.5.2 Parámetros fundamentales del flujo de potencia calculado por el Dycse

Nodo	% Caída U	THD v (%)	Cos Fi	Un (kV)
2	0,0000000	0,38%	0,89917768	33,0000000
3	0,0001710	3,62%		9,9999820
4	0,0001710	1,38%		9,9999810
5	0,0060760	2,83%		9,9993920
6	0,9002620	2,76%		9,9099740
7	0,5058570	2,88%		9,9494140

8	1,8126890	3,25%		9,8187310
9	0,4745690	2,76%		9,9525430
10	1,7303590	2,76%		9,8169640
11	0,0364970	2,76%		9,9963500
12	1,2127690	3,06%		9,8787230
13	0,0328370	1,09%		9,9967160
14	0,0001830	1,04%		9,9999820
15	0,0004810	1,02%		9,9999820
16	0,4334450	1,14%		9,9566560
17	0,0792120	1,04%		9,9920790
18	0,0188320	0,95%		9,9981170
19	-0,1180400	0,97%		10,0118040
20	0,7532540	16,98%	0,61257885	0,4366860
21	0,0048520	1,04%		9,9995150
22	0,2931040	0,43%	0,86995869	0,4387100
23	2,5360580	0,01%	0,95000001	0,4288410
24	2,7902470	18,27%	0,82728915	0,4277230
25	3,6916110	8,13%	0,78443586	0,4237570
26	1,0762200	0,01%	0,99092958	0,4352650
27	8,3448090	0,01%	0,80065131	0,4030630
28	-0,1267190	0,01%	0,13184325	0,4494420
29	3,3552190	4,68%	0,89835355	0,4252370
30	0,1517750	0,96%	0,16566229	0,4392880
31	0,0001820	0,00%	0,80213389	0,4399990
32	0,0001800	0,00%		0,4399990
33	1,4494530	2,91%	0,87083838	0,4336220
34	0,5662270	0,00%	0,80256275	0,4375220
35	0,2424080	0,00%	0,83557824	0,4389330
36	0,5867640	13,99%	0,95432861	0,4374180
37	0,7254160	12,64%	0,95339833	0,4368080
38	1,1969290	18,25%	0,95519537	0,4347340

Tabla 2.5.3 Flujos entre Nodos

Flujos entre Nodos			
Desde Nodo	Hasta Nodo	Q	Р
2	3	8,6585486800	8,9446395100
3	2	-7,1569720900	-8,8405064600
2	4	3,5908184400	3,8655395600
4	2	-3,3211111000	-3,8468355900
3	4	0,0000000000	0,000000000
4	3	0,0000000000	0,000000000
3	5	0,1397446300	0,2386523400
5	3	-0,1397399500	-0,2386493200
3	6	0,5806432700	1,3528946500
6	3	-0,5762294700	-1,3500386600
3	7	1,8579941100	2,4750025700
7	3	-1,8537032200	-2,4722261200

3	8	1,5801312800	1,5460111500
8	3	-1,5701795300	-1,5395717900
3	9	0,3047073700	0,4977475200
9	3	-0,3047073700	-0,4972987200
3	10	0,8759939100	0,8737111300
10	3		-0,8737111300
3	3 11	-0,8741236100	0,0945284100
11	3	0,6956466100	
3	12	-0,6944422300	-0,0937491100 -1,7530748000
		1,1212194300	1,7530748900
12	3	-1,1106373800	-1,7462276800
4	13	0,6640585300	0,1120694900
13	4	-0,6634270000	-0,1116608500
4	14	0,0575172400	0,0766072800
14	4	-0,0575017700	-0,0765972700
4	15	0,0000160600	0,0000028200
15	4	-0,0000160600	-0,0000028200
4	16	0,7863803100	1,1969777900
16	4	-0,7818705700	-1,1940597200
4	17	0,3122581400	0,4022197100
17	4	-0,3120491100	-0,4020844600
4	18	0,2061437400	0,5843571400
18	4	-0,2061015300	-0,5843298300
4	19	1,1388486000	1,2623283100
19	4	-1,1380012600	-1,2617800300
4	21	0,1328322400	0,1975544900
21	4	-0,1328291200	-0,1975524700
5	22	0,1397358400	0,2386385500
22	5	-0,1347736700	-0,2377645100
6	23	0,5762251000	1,3500318100
23	6	-0,4355920600	-1,3252605700
7	24	1,6537822300	1,9000005200
24	7	-1,2408132300	-1,8272597500
7	38	0,1999119300	0,5722118800
38	7	-0,1759999900	-0,5680000100
8	25	1,5701746100	1,5395652600
25	8	-1,2530901400	-1,4837136900
9	26	0,3040099100	0,4972920400
26	9	-0,2819109900	-0,4933995100
10	27	0,8741193500	0,8724942700
27	10	-0,7747999900	-0,8550000600
11	28	0,6944383800	0,0937427400
28	11	-0,6624600000	-0,0881100300
12	29	1,1106325600	1,7462209400
29	12	-0,8296600100	-1,6967301500
13	30	0,6634101400	0,1116578600
30	13	-0,6369350000	-0,1069945000
14	31	0,0574856000	0,0765943400
31	14	-0,0569500100	-0,0765000000
15	32	0,000000100	0,000000000
32	15	-0,000000100	0,000000000
16	33	0,7818535100	1,1940556700
33	16	-0,6621131000	-1,1729644700
17	34	0,3120324000	0,4020810300
• •	<u> </u>	-,- =====	-, :====================================

34	17	-0,2968965100	-0,3994149800
18	37	0,2060815600	0,5843241000
37	18	-0,1836670200	-0,5803759800
19	20	0,9337539600	0,6771081400
20	19	-0,8560000500	-0,6634124800
19	36	0,2042128400	0,5846643200
36	19	-0,1817970200	-0,5807159800
21	35	0,1328053800	0,1975446400
35	21	-0,1294975100	-0,1969619900

Resultados del flujo de carga en la Empresa

Para realizar el flujo de potencia nominal del sistema se utilizó el software DYCSE [23] donde se muestran los siguientes problemas:

- ❖ Bajo factor de potencia en aquellos nodos que la potencia instalada no corresponde con el nivel de carga (Transformadores mal seleccionados)
- ❖ Por otra parte como se corrobora en las mediciones realizadas se ve que existen nodos donde la tención esta por debajo de la nominal y en otras supera la nominal, lo cual justifica a gran cantidad de roturas de motores en la empresa aunque no sobrepasa la norma.
- ❖ Los niveles de THD(V) sobrepasan el 5% en algunos CC.

2.6 Conclusiones

En este capítulo se estudió las características y el comportamiento actual del sistema de suministro industrial del CMNI obteniéndose las siguientes conclusiones:

Al actualizar el monolineal se evidenció una gran variedad de cargas no lineales en el sistema lo cual atenta contra la calidad del sistema.

En las mediciones y el flujo de carga se corrobora los problemas de bajo factor de potencia, alto nivel de pérdidas, sobrecompensaciones y armónicos lo que demuestra la necesidad del diseño de bancos y filtros para mejorar el sistema de suministro en la empresa.

Capítulo 3. Mejoras al sistema de suministro

3.1 Introducción.

En esta parte de la investigación abordamos todo lo relacionado con la compensación de potencia reactiva para el mejoramiento del factor de potencia e instalación de filtros pasivos para la mitigacion de los armónicos por la presencia de cargas no lineales en la Empresa Mecánica del Níquel.

3.2 Determinación de las pérdidas

Metodología de cálculo y análisis.

Las perdidas a frecuencia fundamental se calcularon a través del programa Dycse.

A continuación se presenta una metodología para el análisis de las perdidas. El cálculo del Coeficiente de carga (Kc) y las pérdidas (Δ pt) de los transformadores se calculan en dependencia de las mediciones realizadas a la empresa que se encuentran en el **Anexo(1)**

• Coeficiente de carga (k_c)

$$k_c = \frac{S_{real}}{S_{nominal}}$$
 3.2.1

donde: S_{reaL} -- Potencia registrada en kVA

S_{nominal} -- Potencia nominal del transformador en kVA

• Perdidas en el transformador.

Para determinar las pérdidas en los transformadores se parte de los datos de catálogos obtenido según la metodología siguiente:

Pérdidas totales del transformador: están formada por las pérdidas de vacío y de cortocircuito, esta última varía con el cuadrado del coeficiente de carga calculado anteriormente.

$$\Delta P_t' = \Delta P_{SC}' + K_c^2 \Delta P_{CC}'$$
3.2.2

donde: $\Delta P_{sc}^{'}$ = Pérdidas de vacío totales, considerando el incremento por concepto de potencia reactiva desde la red, en kVAr.

$$\Delta P_{SC}' = \Delta P_{SC} + Kip\Delta Q_{SC}$$
 3.2.3

 $\Delta P_{cc}^{'}$ = Pérdidas de cobre totales, considerando el incremento por concepto de potencia reactiva desde la red, en kVAr.

$$\Delta P_{cc}' = \Delta P_{cc} + Kip\Delta Q_{cc}$$
 3.2.4

 ΔP_{sc} = Pérdidas de potencia del transformador sin carga, considerada como las pérdidas del núcleo en kW (datos de catálogos).

ΔP_{cc}= Pérdidas de potencia del transformador en cortocircuito, tomada como pérdidas de Cobre en kW, (datos de catálogos).

Kip= Coeficiente incremental de pérdidas en (kW/kVAr).

 ΔQ_{sc} = Potencia reactiva del transformador sin carga en kVAr.

$$\Delta Q_{sc} = Sn(Isc^{9/2}/100)$$
3.2.5

 ΔQ_{cc} = Potencia reactiva del transformador en cortocircuito en kVAr.

$$\Delta Q_{cc} = Sn(Ucc \frac{\%}{100})$$
 3.2.6

Las expresiones (3.2.3) hasta la (3.2.6) se emplean para cálculo de los datos nominales del transformador, luego estos datos se usan para obtener el valor de pérdida a través de la fórmula (3.2.2) para cada registro, por lo que permite determinar las pérdidas totales en cada transformador durante el tiempo que

trabaja. Con este valor se determinan los valores de la energía consumida con la siguiente expresión:

$$E = \sum (P \cdot T) \tag{3.2.7}$$

donde: E = Pérdida de energía en transformadores, kWh.

P = potencia registrada en kW.

T = período de registro en Horas.

Para determinar el importe de la energía se tomaron en cuenta el costo de la misma según la tarifa siguiente:

Tarifa1	10:00	pm	06:00 am	0.055 CUC
Tarifa2	06:00	am	06:00 pm	0.075 CUC
Tarifa3	06:00	pm	10:00 pm	0.115 CUC

Al realizar los cálculos pertinentes se afectó la energía en cada centro de carga por cada registro correspondiente en las diferentes horas de trabajo de la empresa y se obtuvo el total de la energía consumida en kWh.

$$Importe = E1 * Tarifa1 + E2 * Tarifa2 + E3 * Tarifa3$$
3.2.8

donde: E1, E2 y E3 energía correspondiente a la Tarifa 1, 2 y 3 respectivamente.

Para las **pérdidas de energía mensual** en transformadores, kWh, se tomaron los 26 días laborables por el consumo de energía diario más cuatro días por las perdidas en vacío de los transformadores.

$$E_{mensual} = (26 * P) + (4 * \Delta Pmv)$$
 3.2.9

Importe mensual estimado: Este parámetro se determinó por el consumo mensual máximo mensual por el valor medio de tarifa.

$$Importe_M = Consumo_M * V medio de tarifa$$
 3.2.10

Importe anual estimado: Se determino por el consumo anual por el valor medio de la tarifa.

$$Im\ porteA = ConsumoA*V medio\ de\ tarifa$$

3.2.11

En la tabla 3.1.1 Se muestra las pérdidas diarias y anuales calcadas por el Dycse a la potencia nominal de la empresa.

Tabla 3.1.1 Pérdidas en el Sistema estimadas por el Dysce en 200 días

Pérdidas de potencia activa				
	P(MW) Costo (CUC)			
Diaria	0.533	44,23		
Anual	852,8	70782		

Perdidas por armónicos.

Para estimar las pérdidas armónicas se tuvo en cuenta solamente las perdidas por la reparación de los motores que tienen afectaciones mensualmente, con este solo indicador económico podemos comprobar que la Empresa incurre en gastos por concepto de reparaciones de motores eléctricos que ascienden a más de \$40548.72 CUC y \$19217.40 MN anualmente.

El CC 6 y 7 perteneciente al taller de fundición 08 posee gran contenido de armónicos como se puede apreciar en las mediciones (anexo(4)) y el flujo armónico que mostramos en el capitulo 2.

Como promedio mensualmente se dañan de 4 a 9 Motores eléctricos solamente en el taller que es el centro de carga 6 que tiene enlace con el 7, todas estas averías son precisamente por la influencia de la introducción de armónicos los cuales generan sobre tensiones como se demuestra en el flujo de potencia obtenido, debido a las cargas no lineales instaladas en este taller.

Con la realización de esta investigación se comprobó lo anteriormente afirmado, a continuación se hace una demostración arribando a las siguientes conclusiones:

1. En el mes de Abril se averiaron en el taller de fundición 5 motores, para la reparación de ellos la empresa gastó en materiales y mano de obra un total de mil seiscientos un peso con cuarenta y cinco centavos en Moneda Nacional

(\$1.601,45 MN) y representando anualmente tres mil trescientos setenta y nueve dólares con seis centavos (\$3.379,06 CUC), suponiendo que solamente ocurran estas averías, que como sabemos estos números son ínfimos comparado con la realidad de las afectaciones.

Tabla 3.2.1 Características de los motores averiados en un mes por concepto de armonicos.

Motores	HP	R.P.M	Precio (MN)	Precio
				(CUC)
Bomba	20	3600	137.05	289.18
Bomba	20	3600	137.05	289.18
Trituradora	30	1800	241.20	508.93
Grúa	75	720	844.95	1782.84
Enfriador	27	1800	241.20	508.93
Total			1.601,45	3.379,06

Con la realización de filtros pasivos para mitigar los armónicos en el taller de fundición, la Empresa tendrá menos pérdidas económicas por el concepto de reparación de motores eléctricos.

3.3 Análisis y mejora de la compensación

Formas de elevación del Factor de Potencia

Para el correcto mejoramiento del factor de potencia industrial es solo posible con la combinación de diferentes medios de su elevación, cada uno de ellos debe estar técnica y económicamente fundamentados. Para mejorar el factor de potencia se pueden utilizar los medios siguientes

- a) Reducción del consumo de potencia reactiva, sin la aplicación de medios compensadores.
- b) Aplicación de medios compensadores.

En primer orden deben considerarse los medios para la reducción del consumo de potencia reactiva, sin la sin la aplicación de medios compensadores, por cuanto para su ejecución, en términos generales, no se requieren grandes inversiones capitales:

- 1) Ordenamiento del proceso tecnológico.
- 2) Sustitución de los motores asincrónicos subcargados, por otros de menor potencia.
- 3) Reducción del voltaje de los motores que sistemáticamente trabajan con poca carga.
- 4) Limitación del trabajo de los motores en vacío.
- 5) Sustitución de motores asincrónicos por motores sincrónicos.
- 6) Elevación de la calidad de la reparación de los motores.
- 7) Sustitución de los transformadores subcargados.

Veamos una de estas medidas independiente ya que es una de la mas importante que se tratará en este trabajo.

En la elevación del factor de potencia natural puede ser alcanzados grandes éxitos a través de la racionalización del trabajo de los transformadores, logrado con la sustitución y reagrupación de estos, así como, la desconexión de algunos durante las horas de menor carga.

Si con estas medidas se reduce el consumo de potencia reactiva y se disminuyen las pérdidas de potencia activa, entonces su ejecución será incuestionablemente de gran utilidad.

Una gran parte de los equipos industriales requieren, durante su operación normal, además de la potencia activa, potencia reactiva. Los principales consumidores de potencia reactiva son: los motores eléctricos (60 al 65%) de la potencia reactiva total, los transformadores (20 al 25%), las líneas, reactores, convertidores y otros (cerca del 10%). En dependencia del carácter del equipo, su potencia reactiva puede constituir hasta el 130% en relación con la potencia reactiva.

El factor de potencia $(\cos \varphi)$ no tiene solo importancia esencial en la economía de una empresa, sino en general para la energética de un país. Es decir, el factor de potencia caracteriza la correlación de las potencias eficaces activa y reactiva, y constituye un índice de la utilización cualitativa de la energía eléctrica. Mediante el $\cos \varphi$, podemos saber el comportamiento de la magnitud de la potencia reactiva y la estabilidad de la misma.

Para esto se proponen 2 variantes:

- Se propuso porque la empresa necesitaba saber como quedaría el sistema después de una reestructuración de los bancos de condensadores, si reacomodar las cargas.
- 2. Esta otra por su parte tomando en cuenta las mediciones que demuestran el bajo coeficiente de carga de los transformadores de la entidad, plantea un reacomodo de las cargas antes de realizar la compensación y el filtraje armónico al sistema

Para compensar los nodos en el sistema utilizamos un programa informático como herramienta (DYCSE), que del cual ya hemos hablado anteriormente

Variante #1

Primeramente definimos cuales eran los nodos con bajo factor de potencia (20, 22, 24, 25, 26, 27, 28 30, 31, 34, 35), estos están conformados por; Hornos de inducción y de Arco, Maquinas de soldar y otros, En el capítulo II se obtuvo un flujo de potencia con la carga instalada actualmente, en este capítulo se realizó un cálculo de la compensación con el DYCSE, en los nodos la compensación del sistema trajo consigo la disminución de las sobretensiones y un mejoramiento del factor de potencia. Para ello se introdujeron filtros armónicos, se desconectaron los bancos instalados en los centros de carga donde existía sobrecompensación.

Cálculo de los condensadores

Para estandarizar los resultados se escogieron bancos de condensadores automáticos de 80 y 200 kVAR automáticos provenientes de la firma DUCATI y sus características se muestran a continuación:

Voltaje nominal 500 V

Tolerancia a la capacidad (-5+10)%

Voltaje de prueba (CA) entre los terminales: 2.15 Un x 2

Voltaje de prueba (CA) entre los terminales y el estuche: 3 kV x10 seg.

Servicio continuo.

Resistencia de descarga 75 después de 3 minutos

Perdidas dieléctricas ≤0.5 w/kVAR

Perdidas en la inductancia ≤0.5 w/kVAR

Con un precio de 3318.64 CUC incluyendo mano de obra y montaje que se le introdujo al dycse para el calculo económico de las variantes.

Los de 80 kVAR son los que están inactivos en los centro de cargas actualmente. ya que esto se traduce en menos gastos de inversión p para la empresa.

En la tabla 3.3.1 se muestra la ubicación de los bancos de condensadores por nodo

Tabla 3.3.1 Ubicación de los bancos de condensadores por nodos.

Nodos	CkVAR (Calculado por el dycse)	CkVAR Estandarizado
20	198	2 * 200
22	64	80
24	403	2 * 200
25	378	2 * 200
26	138	200
27	389	2 * 200
28	405	2 * 200
30	408	2 * 200
31	34	80

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

34	180	200
35	72	80

En la tabla 3.3.2 y 3.3.3 se muestra la mejora del $cos(\phi)$ después de la compensación y el nuevo flujo de cargas.

Tabla 3.3.2 Parámetros del flujo de carga después de la compensación

Nodo	Un	THDv (%)	Cos Fi	% Caída U
2 B	33,0000000	0,46%	0,92135203	0
3 C	9,9999972	2,81%	,	0,0000280
4 C	9,9999610	0,87%		0,0003900
5 C	9,9996920	2,56%		0,0030800
6 C	9,9497740	1,66%		0,5022600
7 C	9,9496140	1,81%		0,5038600
8 C	9,8987310	2,06%		1,0126900
9 C	9,9525430	1,56%		0,4745700
10 C	9,8169640	1,56%		1,8303600
11 C	9,9973500	1,56%		0,0265000
12 C	9,8757230	1,93%		1,2427700
13 C	9,9964160	2,07%		0,0358400
14 C	9,9999720	3,05%		0,0002800
15 C	9,9999820	3,02%		0,0001800
16 C	9,9567656	4,19%		0,4323440
17 C	9,9927079	3,07%		0,0729210
18 C	9,9981170	4,67%		0,0188300
19 C	10,0117804	3,72%		-0,1178040
20 C	0,4366786	4,60%	0,96000004	0,7548636
21 C	9,9995815	3,08%		0,0041850
22 C	0,4388710	0,00%	0,96000003	0,2565909
23 C	0,4288341	0,00%	0,85712359	2,5377045
24 C	0,4277923	4,31%	0,96000003	2,7744773
25 C	0,4237657	4,95%	0,95620979	3,6896136
26 C	0,4352865	0,00%	0,96000003	1,0712500
27 C	0,4030963	0,00%	0,96000004	8,3872045
28 C	0,4399442	0,00%	0,96000004	0,0126818
29 C	0,4252537	4,10%	0,89835355	3,3514318
30 C	0,4397288	0,37%	0,96000022	0,0616364
31 C	0,4399990	0,00%	0,96000001	0,0002273
32 C	0,4399999	0,01%		0,0000181
33 C	0,4386220	3,48%	0,87083839	0,3131818
34 C	0,4357522	0,00%	0,96000001	0,9654091
35 C	0,4368933	0,00%	0,96000002	0,7060682
36 C	0,4347418	4,99%	0,95432861	1,1950455
37 C	0,4378080	1,13%	0,95339834	0,4981818
38 C	0,4347340	4,25%	0,95519538	1,1968182

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

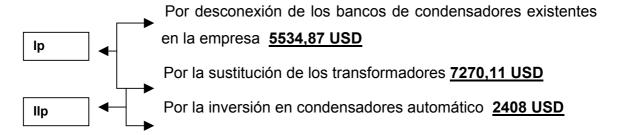
Tabla 3.3.3 Flujo en cada nodo

Desde Nodo	Hasta Nodo	Р	Q
2	3	9,655996810	5,754394090
3	2	-9,571098110	-4,530172800
2	4	3,847508100	1,849430230
4	2	-3,835263120	-1,672860220
3	4	0,00000000	0,000000000
4	3	0,000000000	0,000000000
3	5	0,238448460	0,073150390
5	3	-0,238446150	-0,073146810
3	6	1,358737580	0,972169920
6	3	-1,355277710	-0,966822830
3	7	2,445502640	0,986269510
7	3	-2,443606530	-0,983339150
3	8	1,515934620	0,623268460
8	3	-1,512604600	-0,618122060
3	9	0,496676700	0,161073290
9	3	-0,496338760	-0,160551030
3	10	0,864646970	0,301521920
10	3	-0,864023340	-0,300558130
3	11	0,892050700	0,313618490
11	3	-0,890720770	-0,311563140
3	12	1,748984670	1,100044120
12	3	-1,742634750	-1,090230600
4	13	0,107135900	0,031943260
13	4	-0,107125020	-0,031926450
4	14	0,076576410	0,022697660
14	4	-0,076569690	-0,022687270
4	15	0,000006240	0,000015130
15	4	-0,000006240	-0,000015130
4	16	1,196049040	0,781556520
16	4	-1,193244240	-0,777221830
4	17	0,401269280	0,126631410
17	4	-0,401180080	-0,126493560
4	18	0,584220340	0,205346360
18	4	-0,584194000	-0,205305640
4	19	1,253196970	0,425400640
19	4	-1,252876110	-0,424904760
4	21	0,197398720	0,059869700
21	4	-0,197397260	-0,059867440
5	22	0,238433250	0,073144580
22	5	-0,237764510	-0,069347960
6	23	1,355269640	0,966819320
23	6	-1,325260610	-0,796449980
7	24	1,871640810	0,784914370
24	7	-1,827259650	-0,532950530

Ī	İ	i i	İ
7	38	0,571948780	0,198418200
38	7	-0,568000010	-0,175999990
8	25	1,512596320	0,618118560
25	8	-1,483713600	-0,454143540
9	26	0,496330510	0,160548210
26	9	-0,493399510	-0,143908140
10	27	0,864014970	0,300555100
27	10	-0,855000030	-0,249374860
11	28	0,890712520	0,311560080
28	11	-0,881100030	-0,256987360
12	29	1,742626670	1,090226810
29	12	-1,696730170	-0,829659980
13	30	0,107118600	0,031911190
30	13	-0,106994500	-0,031206640
14	31	0,076563340	0,022672070
31	14	-0,076500000	-0,022312500
15	32	0,000000000	0,000000010
32	15	0,000000000	-0,00000010
16	33	1,193237010	0,777205530
33	16	-1,172964510	-0,662113070
17	34	0,401173220	0,126477950
34	17	-0,399414990	-0,116496020
18	37	0,584184170	0,205287090
37	18	-0,580375990	-0,183667010
19	20	0,668339000	0,221464360
20	19	-0,663412490	-0,193495220
19	36	0,584522670	0,203408560
36	19	-0,580715990	-0,181797010
21	35	0,197384490	0,059845870
35	21	-0,196962000	-0,057447240
		,	,

Esta variante disminuye las perdidas de 544kW a 228kW

Variante #2


Tomando como partida el proyecto GEEM 2000-2001[18] donde se analiza las posibles variantes de reacomodo de carga para lograr eliminar los transformadores subcargados de la empresa, se tiene la necesidad de correr el flujo para saber como es el comportamiento de los parámetros de calidad, ya que es una de las limitantes que tiene dicho estudio por no poseer en ese momento con una herramienta de calculo de flujo. Se toma la variante #1 de dicho proyecto, por ser la que mas beneficio trae a la empresa a pesar de ser un poco más cara.

lo Unión de los centros de carga #2, 3, 4, 5, 6 y 7.

Ilo Unión del centro de carga #1,8 y 9.

Variante #1 de GEEM 2000-20001[18]

Figura 3.3.1 Análisis de las uniones de los centros de cargas 2,3,4,5,6,7 y el centro de carga 1,8,9

Se procedió a realizar un reacomodo de los nodos, modificando el monolineal original como se muestra en el *(anexo 1)* y se corrió el flujo para mostrar el comportamiento de los parámetros de esta variante.

Tabla 3.3.4 Parámetros del flujo de carga después de la compensación

Nodo	Un	% Caída U	Cos Fi
2 B NT	33,000000000	0,000000000	0,960404270
3 C	9,918441970	0,815580340	
4 C	9,781754270	2,182457270	
5 C	9,916307370	0,836926330	
6 C	9,909652030	0,903479730	
7 C	9,905889440	0,941105590	
8 C	9,746072710	2,539272940	
9 C	9,753106400	2,468936000	
10 C	9,781145870	2,188541320	
11 C	9,778401780	2,215982180	
12 C	0,422258350	4,032192580	0,960000050
13 C	0,425714170	3,246779960	0,960000020
14 C	0,429089340	2,479695870	0,976255890
15 C	0,407724290	7,335388120	0,960000020
16 C	0,412251990	6,306365150	0,960000020

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

17 C	0,423743250	3,694716540	0,967492700
18 C	0,423069550	3,847829160	0,953398350
19 C	0,429378540	2,413967130	0,955195370

Tabla 3.3.5 Flujos entre nodo

Flujos entre Nodos				
Desde Nodo	Hasta Nodo	P (kW)	Q (kVAR)	
2	3	2,110945750	0,716119670	
3	2	-2,107607000	-0,667975680	
2	4	5,849771050	3,026071320	
4	2	-5,831208940	-2,758409610	
3	4	0,000000000	0,000000000	
4	3	0,00000000	0,000000000	
3	5	0,571632480	0,196251320	
5	3	-0,571542630	-0,196112450	
3	6	0,863643640	0,296136500	
6	3	-0,863084390	-0,295272210	
3	7	0,672330880	0,175587860	
7	3	-0,671682980	-0,174586560	
4	8	1,640369380	0,651097740	
8	4	-1,636072410	-0,644456970	
4	9	1,342898440	0,505827590	
9	4	-1,340057600	-0,501437200	
4	10	0,584245300	0,205427630	
10	4	-0,584218850	-0,205386740	
4	11	1,253129410	0,394927140	
11	4	-1,252811870	-0,394436400	
5	19	0,571542630	0,196112450	
19	5	-0,568000000	-0,176000000	
6	13	0,863084390	0,295272210	
13	6	-0,855000000	-0,249374940	
7	14	0,671682980	0,174586560	
14	7	-0,667000000	-0,148000000	
8	15	1,636057780	0,644447450	
15	8	-1,605000150	-0,468124920	
9	16	1,340043040	0,501428050	
16	9	-1,319510100	-0,384857000	
10	18	0,584200220	0,205377990	
18	10	-0,580376020	-0,183666990	
11	12	0,668359750	0,221581940	
12	11	-0,663412520	-0,193495190	
11	17	0,584422140	0,172837680	
17	11	-0,580716020	-0,151796990	

Esta variante reduce considerablemente las pérdidas a 112 kW y tiene como ventaja que solo hay que comprar un condensador variable de 200 kVAR para

compensar el nodo 12, para compensar los nodos 13,15 y 16 se utilizarían los que posee la empresa actualmente. Para el enlace entre los CC se utilizaran cables Cable de cobre flexible, forro EPR, 0,6/1 KV de 3 x120 mm2 que tienen un valor de! 13.120,00 euros el Km. Según datos suministrados por la empresa se necesitarían 2km de este cable para llevar a cabo el proyecto con un valor de 26.240,00 euros.

3.4 Propuestas de mejoras al sistema

Determinación del filtro para reducir el efecto armónico.

En la Empresa hay un desconocimiento del nivel y los efectos de armónicos en sus instalaciones. Este fenómeno eléctrico ha ido en aumento y afecta seriamente a los equipos, si no se toman las medidas adecuadas para eliminarlos o a lo menos neutralizarlos.

Los armónicos tienen su origen en la propia industria. Este aumento de armónicos se ha debido al gran desarrollo de los accionamientos mediante semiconductores electrónicos de potencia, convertidores estáticos, hornos de arco, etc.

Entre los problemas mas frecuentes que causan los armónicos podemos señalar:

- Interferencias en las telecomunicaciones.
- Distorsión en la tensión de la red.
- Perturbaciones en los sistemas electrónicos informáticos.
- Funcionamiento defectuoso de relés.
- ❖ Fallas en transformadores y motores debido al sobrecalentamiento producido por el aumento de las perdidas en el núcleo electromagnético, por una generación de mayores corrientes parásitas.
- Interrupción en la alimentación debida al disparo de las protecciones.

La solución es instalar filtros de eliminación de armónicos que están constituidos por filtros de serie "reactancia-condensador". Es decir, por una parte se debe mejorar el factor de potencia instalando condensadores y por otra se deben

considerar filtros para la protección de los mismos condensadores y para la eliminación de los armónicos.

Filtros de Armónicos

La presencia de armónicos puede plantear problemas tanto para los condensadores instalados como para el resto de aparatos conectados a la red. Por un lado las condiciones de trabajo de los condensadores pueden llegar a ser extremadamente duras o inadmisibles y por otro aparecen perturbaciones y distorsiones en el funcionamiento de equipos electrónicos e informáticos, redes de telecomunicaciones, transformadores, elementos de maniobra, ect. La solución de la compensación de energía reactiva en redes con armónicos se realiza protegiendo los condensadores mediante filtros de protección o reduciendo el nivel de armónicos mediante filtros de eliminación. Por ultimo, también se puede pretender reducir el nivel de armónicos de una instalación sin considerar la corrección del factor de potencia.

Los filtros armónicos pueden usarse para:

- Mejorar el factor de potencia
- Reducir armónicos
- Reducir corrientes de retorno por el neutro en sistemas trifásicos
- Minimizar el impacto sobre los transformadores de distribución.
- Generador depósitos de los efectos armónicos.
- Liberar capacidad de distribución.

Algunos filtros agregan aspectos útiles tales como regulación de voltaje y corrección momentánea por "sags" de voltaje. En las áreas con alta incidencia de tormentas, una combinación de filtro armónico y estabilizador de voltaje puede resultar beneficiosa tanto para la compañía de electricidad como para la carga. La evaluación y la planificación cuidadosa del tipo de filtro que se utilizará para controlar problemas con armónicos es esencial. Una de manera para reducir problemas armónicas está con la prevención activa. Si la selección de nuevo

equipo contiene posibilidad de controlar internamente el factor de potencia, entonces el impacto de estas cargas sobre la empresa será mínimo

A continuación se ilustró la tabla 3.3.1 el comportamiento de la eficiencia de los filtros en sistemas eléctricos de potencia tomada de López M. L. [24].

Tabla 3.4.1 Comparación en las características del desempeño

Tipo de filtros	Reactor en Línea	Filtro Pasivo	Filtro Activo	Filtro Electrónico
I rms sin filtro	8.5	8.5	4.1	14.5
I rms con filtro	6.6	6.9	2.9	10.9
FP sin filtro	0.71	0.71	0.66	-0.64
FP con filtro	0.81	0.95	-0.97	-0.98
THD en voltaje de entrada	2.7%	3.1%	2.2%	2.1%
THD en voltaje de salida	27.6%	25.7%	23.4%	0.6%
Voltaje pico de entrada	168 V	169 V	170 V	166 V
Voltaje pico de salida	128 V	132 V	154 V	167 V
THD corriente de entrada	35.9%	27.0%	23.9%	2.1%
THD corriente de salida	36.1%	32.9%	31.2%	123%
Potencia de entrada (W)	729W	781W	340W	1253 W
Potencia de salida (W)	685W	697W	326W	1117 W
Eficiencia %	93.9	89.2	95.9	89.1

En el caso especifico de la Empresa Mecánica del Níquel en el nodo recomendamos un filtro pasivo, estos están constituidos por elementos reactivos (bobinas y condensadores) conectados en paralelo con la carga. Su gran ventaja es la simplicidad, fiabilidad y robustez de su diseño al estar compuesto de elementos pasivos. Pero también poseen numerosas desventajas, como son el gran tamaño de la bobina y el condensador, la pobre respuesta dinámica ante cambios en la carga, la gran influencia de la impedancia de red en el filtrado, la posibilidad de que aparezcan resonancias, la imposibilidad de eliminar más de un número limitado de armónicos.

En la figura 3.4.1 se muestra la forma de conectar este tipo de filtro en el sistema.

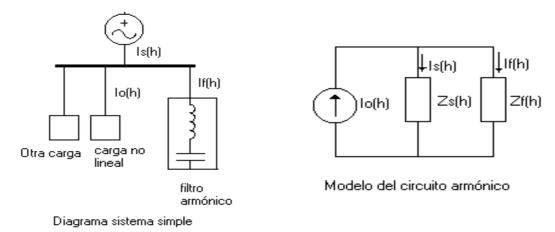


Fig. 3.4.1. Sistema con filtro armónico conectado y el modelo del circuito armónico.

Parámetros para la selección del filtro.

El diseño del filtro se realizo con el programa dycse utilizando las formulas que tenemos a continuación. Debido a que en las mediciones efectuadas el comportamiento armónico significativo corresponde al 5^{to} armónico, se sintoniza el filtro a dicho armónico.

$$Q_c = P_i^* \operatorname{Tan}(\cos \varphi_1 - \cos \varphi_2) \tag{3.4.1}$$

$$X_{c} = \frac{U^{2}}{Q_{c}}$$
 (3.4.2)

$$X_{L} = \frac{X_{c}}{h^{2}_{(s)}}$$
 (3.4.3)

$$C = \frac{1}{2 * \Pi * f_h * X_C}$$
 (3.4.4)

$$L = \frac{X_L}{2 * \Pi * f_h} \tag{3.4.5}$$

$$h_o = \sqrt{\frac{X_c}{X_L}} = \frac{1}{f_b * 2\pi * \sqrt{L * C}}$$
 (3.4.6)

Q_c → Potencia reactiva consumida

P_i → Potencia activa instalada

 $\cos \varphi_1 \rightarrow Instalado$

 $cos \varphi_2 \rightarrow Deseado$

X_c → Reactancia Capacitiva

 $X_L \rightarrow$ Reactancia Inductiva

C → Capacitancia

L→ Inductancia

U →tensión

f_h → Frecuencia armónica

f_b → Frecuencia base (60 Hz)

h₀ → Frecuencia de sintonía del filtro

Variante # 1

En el caso del horno de inducción, CC 2 y 3,6 y 7, 8 (nodos 20 28-23, 22, 27), el TDH de tensión, por lo que tenemos valores que están por encima de las normas internacionales norma IEEE - 519, que admiten un TDH $_{\rm v}$ 5 % y un TDH $_{\rm i}$ 20 %, por ello se recomienda la instalación de filtros armónicos.

Tabla 3.4.1 Selección del filtro y su costo de la variante #1.

Nodos	L (mH)	C (μF)	CC#	Costo (USD)
20	42.1	18.5	Hornos	200 /250
28	79.2	0.4	2 y 3	200/250
27	67.55	0.42	8	200/250
22	76,5	0,2	6 y 7	200/250

Los filtros diseñados para la variante # 2 se muestran en la tabla 3.3.6. Para ver los CC por nodos consultar los reacomodos de cagas mostrados en la figura 3.3.1

Variante #2

Tabla 3.4.2 Selección del filtro y su costo de la variante #2

Nodos	L (mH)	C (μF)	Costo (USD)

Autor: Omar Figueredo Oliveros

12	13.26	58.93	200 /250
13	4.18	10.56	200/250
16	29.45	3.56	200/250

Propuestas de variantes de optimización para la variante # 1

Se realizó la optimización del sistema y se escogieron las 10 mejores variantes (tabla 3.3.2). Se optimizó teniendo en cuenta alto $\cos(\phi)$, menores pérdidas de potencia activa, menor potencia de los bancos de condensadores y menores sobretenciones. El software (DYCSE) realiza la optimización por el método de programación evolutiva utilizando algoritmos genéticos que se basa en una búsqueda heurística partiendo de una población inicial mejorada hasta alcanzar una más eficiente.

Tabla 3.4.2 Datos de las variantes seleccionadas

Variantes	Qc (cMVAr)	Perdidas (MW)	ΔQ(Mvar)	VAN	TIR	Per Rec
1	2,833	0,226	2.617	125679,61	133,48	0,71
2	2,617	0,230	2.643	129713,37	145,10	0,66
3	2,783	0,228	2.627	128009,02	138,15	0,69
4	2,647	0,229	2.639	129638,60	144,04	0,66
5	2,537	0,231	2.655	127609,50	143,23	0,67
6	2,550	0,232	2.663	124453,59	142,25	0,67
7	2,430	0,234	2.677	122187,30	140,74	0,68
8	2,624	0,233	2.670	120431,33	135,96	0,70
9	2,575	0,232	2.688	121133,86	135,12	0,70
10	2,137	0,244	2.746	132221,69	165,26	0,59

Qc Valor total de condensador los condensadores

ΔP ☞ Pérdidas de potencia activa

∆Q [∞] Pérdidas de potencia reactiva

VAN PValor Actualizado Neto

TIR Tasa interna de retorno

Per Rec Período de recuperación

Como propuesta mejor propuesta tenemos la variante #10 por ser la que posee mayor VAN y TIR ya que sus parámetros están bastante acordes con los requerimientos de la empresa. Los parámetros de la variante se muestran en las tablas 3.3.1 y 3.3.2

Tabla 3.4.1 resultados del flujo de potencia en cada nodo después de la optimización

2 B 33,0000000 0,40% 0,942258734 3 C 9,9999820 2,81% 4 C 9,9999810 0,87% 5 C 9,9993920 1,56% 6 C 9,9499740 1,56% 7 C 9,9494140 1,81% 8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	6 Caída U 0,0000000 0,0001810 0,0001910 0,0060760 0,9002620 0,5058570 1,8126890 0,4745690 1,8303590 0,0364970 1,2127690
3 C 9,9999820 2,81% 4 C 9,9999810 0,87% 5 C 9,9993920 1,56% 6 C 9,9499740 1,56% 7 C 9,9494140 1,81% 8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	0,0001810 0,0001910 0,0060760 0,9002620 0,5058570 1,8126890 0,4745690 1,8303590 0,0364970
4 C 9,9999810 0,87% 5 C 9,9993920 1,56% 6 C 9,9499740 1,56% 7 C 9,9494140 1,81% 8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	0,0001910 0,0060760 0,9002620 0,5058570 1,8126890 0,4745690 1,8303590 0,0364970
5 C 9,9993920 1,56% 6 C 9,9499740 1,56% 7 C 9,9494140 1,81% 8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	0,0060760 0,9002620 0,5058570 1,8126890 0,4745690 1,8303590 0,0364970
6 C 9,9499740 1,56% 7 C 9,9494140 1,81% 8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	0,9002620 0,5058570 1,8126890 0,4745690 1,8303590 0,0364970
7 C 9,9494140 1,81% 8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	0,5058570 1,8126890 0,4745690 1,8303590 0,0364970
8 C 9,8187310 2,06% 9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	1,8126890 0,4745690 1,8303590 0,0364970
9 C 9,9525430 1,56% 10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	0,4745690 1,8303590 0,0364970
10 C 9,8169640 1,56% 11 C 9,9963500 1,56%	1,8303590 0,0364970
11 C 9,9963500 1,56%	0,0364970
	_
1 40 0 0 0707000 4 000/	1,2127690
12 C 9,8787230 1,93%	
13 C 9,9967160 3,07%	0,0328370
14 C 9,9999820 3,05%	0,0001830
15 C 9,9999820 3,02%	0,0001810
16 C 9,9566560 3,19%	0,4334450
17 C 9,9920790 3,07%	0,0792120
18 C 9,9981170 2,67%	0,0188320
19 C 10,0118040 2,72%	-0,1180400
20 C 0,4366860 4,60% 0,952578860	0,7532540
21 C 9,9995150 3,08%	0,0048520
22 C 0,4387100 0,00% 0,948001720	0,2931040
23 C 0,4288410 0,00% 0,869123590	2,5360580
24 C 0,4277230 4,31% 0,949524380	2,7902470
25 C 0,4237570 4,95% 0,936209790	3,6916110
26 C 0,4352650 0,00% 0,944561240	1,0762200
27 C 0,4030630 0,00% 0,967600650	8,3948090
28 C 0,4394420 0,00% 0,965754710	0,1267190
29 C 0,4252370 3,10% 0,896353550	3,3552190
30 C 0,4392880 0,37% 0,979963020	0,1617750
31 C 0,4399990 0,00% 0,965600000	0,0001820
32 C 0,4399990 0,01%	0,0001800
33 C 0,4336220 2,48% 0,870838390	1,4494530
34 C 0,4375220 0,00% 0,960000010	0,5632270
35 C 0,4389330 0,00% 0,939433300	0,2424080
36 C 0,4374180 4,99% 0,954328610	0,5867640

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

37 C	0,4368080	1,13%	0,953398330	0,7254160
38 C	0,4347340	3,25%	0,955195370	1,1969290

Tabla 3.4.2 Flujo de carga en cada nodo optimizado

Flujos entre Nodos				
Desde Nodo	Hasta Nodo	Р	Q	
2	3	9,6530487	5,6529194	
3	2	-9,5689661	-4,4404652	
2	4	3,8483415	2,0059346	
4	2	-3,8356868	-1,8234562	
3	4	0,0000000	0,0000000	
4	3	0,0000000	0,0000000	
3	5	0,2384468	0,0731421	
5	3	-0,2384444	-0,0731385	
3	6	1,3586548	0,9717359	
6	3	-1,3552035	-0,9664020	
3	7	2,4442174	0,9186559	
7	3	-2,4423620	-0,9157884	
3	8	1,5158585	0,6228696	
8	3	-1,5125363	-0,6177354	
3	9	0,4967892	0,1892653	
9	3	-0,4964396	-0,1887251	
3	10	0,8644418	0,2741415	
10	3	-0,8638315	-0,2731982	
3	11	0,8918666	0,2923928	
11	3	-0,8905590	-0,2903720	
3	12	1,7488512	1,0993543	
12	3	-1,7425175	-1,0895658	
4	13	0,1071359	0,0319457	
13	4	-0,1071250	-0,0319288	
4	14	0,0765802	0,0296477	
14	4	-0,0765731	-0,0296366	
4	15	0,0000058	0,0000153	
15	4	-0,0000058	-0,0000153	
4	16	1,1961301	0,7819779	
16	4	-1,1933154	-0,7776279	
4	17	0,4012512	0,1175145	
17	4	-0,4011628	-0,1173780	
4	18	0,5842322	0,2054163	
18	4	-0,5842058	-0,2053755	
4	19	1,2540549	0,5626686	
19	4	-1,2537077	-0,5621320	
4	21	0,1974190	0,0743984	
21	4	-0,1974175	-0,0743960	
5	22	0,2384318	0,0731365	
22	5	-0,2377645	-0,0693480	
6	23	1,3551956	0,9663988	

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

		-
6	-1,3252606	-0,7964500
24	1,8704055	0,7174141
7	-1,8272596	-0,4724636
38	0,5719400	0,1983682
7	-0,5680000	-0,1760000
25	1,5125283	0,6177321
8	-1,4837136	-0,4541435
26	0,4964316	0,1887225
9	-0,4933995	-0,1715087
27	0,8638233	0,2731954
10	-0,8550000	-0,2231036
28	0,8905509	0,2903691
11	-0,8811000	-0,2367137
29	1,7425096	1,0895623
12	-1,6967302	-0,8296600
30	0,1071190	0,0319134
13	-0,1069945	-0,0312066
31	0,0765672	0,0296213
14	-0,0765000	-0,0292400
32	0,0000000	0,0000000
15	0,0000000	0,0000000
33	1,1933085	0,7776115
16	-1,1729645	-0,6621131
34	0,4011564	0,1173623
17	-0,3994150	-0,1074760
37	0,5841964	0,2053567
18	-0,5803760	-0,1836670
20	0,6691589	0,3586198
19	-0,6634125	-0,3259962
36	0,5845352	0,2034799
19	-0,5807160	-0,1817970
35	0,1974053	0,0743741
21	-0,1969620	-0,0718573
	24 7 38 7 25 8 26 9 27 10 28 11 29 12 30 13 31 14 32 15 33 16 34 17 37 18 20 19 36 19 35	24 1,8704055 7 -1,8272596 38 0,5719400 7 -0,5680000 25 1,5125283 8 -1,4837136 26 0,4964316 9 -0,4933995 27 0,8638233 10 -0,8550000 28 0,8905509 11 -0,8811000 29 1,7425096 12 -1,6967302 30 0,1071190 13 -0,1069945 31 0,0765672 14 -0,0765000 32 0,0000000 15 0,0000000 33 1,1933085 16 -1,1729645 34 0,4011564 17 -0,3994150 37 0,5841964 18 -0,5803760 20 0,6691589 19 -0,5807160 35 0,1974053

Propuestas de variantes de optimización para la variante #2

Debido a que variante # 2 es la mejor desde el punto de vista económico y en cuanto a disminución de perdidas fundamentales y armónicas, ya que las elimina considerablemente de 533kW a 112kW no se hace necesario la optimización del sistema.

3.5 Valoración económica.

Para el cálculo económico realizado por el Dycse se realizó con las las siguientes formulas:

$$C_p = C_o * \Delta E$$

$$\Delta E = \Delta P * T$$

$$\mathsf{T}_{\mathsf{am}} = \frac{C_{\mathit{inv}}}{C_{\mathit{p}}}$$

Cinv Costo de la Inversión

C_p Costos anuales de pérdida de energía

C₀ [☞] Costo kW/hora

ΔE ☞ Pérdidas de energía

ΔP ☞ Pérdidas de potencia

T Tiempo de trabajo anual

T_{am} Tiempo de amortización

El software Dycse realiza un análisis económico de la inversión teniendo en cuenta los siguientes métodos y formulas.

Valor Actual Neto. (VAN)

Consiste en actualizar a valor presente los flujos de caja futuros que va a generar el proyecto, descontados a un cierto tipo de interés ("la tasa de descuento"), y compararlos con el importe inicial de la inversión. Como tasa de descuento se utiliza normalmente el coste promedio ponderado del capital (cppc) de la empresa que hace la inversión.

$$VAN = -A + [FC1/(1+r)^1] + [FC2/(1+r)^2] + ... + [FCn/(1+r)^n]$$

Siendo:

A: desembolso inicial

FC: flujos de caja

n: número de años (1,2,...,n)

r: tipo de interés ("la tasa de descuento")

1/(1+r)^n: factor de descuento para ese tipo de interés y ese número de años

FCd.: flujos de caja descontados

Si VAN> 0: El proyecto es rentable.

Si VAN< 0: El proyecto no es rentable.

Tasa Interna de Retorno (TIR).

Se define como la tasa de descuento o tipo de interés que iguala el VAN a cero.

$$VAN = -A + [FC1/(1+r)^1] + [FC2/(1+r)^2] + ... + [FCn/(1+r)^n] = 0$$

Si TIR> tasa de descuento (r): El proyecto es aceptable.

Si TIR< tasa de descuento (r): El proyecto no es aceptable.

Este método presenta más dificultades y es menos fiable que el anterior, por eso suele usarse como complementario al VAN.

Valoración económica de la variante #1

Para el cálculo del VAN y el TIR y el tir se utilizaron los siguientes datos:

Valor de Qc - 13,3 CUC por cada 1kVAR

Valor total de los accesorios 2000 CUC

Valor total de instalación 1000 CUC

Valor total de los filtros 1000 CUC

Costo total de la inversión C_{inv} = 53894.08 CUC

Costo del $\Delta p = 82072,32$ CUC

Tasa de interés = 20 % en un periodo de 3 años

Y se obtuvo:

VAN = 95559.17 CUC

TIR = 127.82%

Período de Recuperación de la inversión = 8 meses

Valoración económica de la variante # 2

Para el cálculo del VAN y el TIR y el tir se utilizaron los siguientes datos:

Valor de Qc - 13,3 CUC por cada 1kVAR

Valor total de los accesorios 26440

Valor total de instalación 100 CUC

Valor total de los filtros 850 CUC

Costo total de la inversión C_{inv} = 35251 CUC

Costo del $\Delta p = 106272,32$ CUC

Tasa de interés = 20 % en un período de 3 años

Y se obtuvo:

VAN = 129927.94 CUC

TIR = 211.90%

Período de Recuperación de la inversión = 5 meses

3.6 Conclusiones

Se demostró que un reacomodo de carga antes de la compensación es mas factible económicamente porque posee un VAN y TIR mayor y su periodo de recuperación es de 5 meses, en cuanto a perdidas las reduce de 533kW a 112kW. Se demuestra lo factible el uso del método de optimización de un sistema dad para lograr mejores variantes para el sistema.

Conclusiones

- > El sistema de suministro actual y su estructura no permiten garantizar de una forma eficiente el ahorro de energía.
- Se demostró en las mediciones y con el resultado del flujo Software Dycse que existe un nivel de pérdidas considerables en los trasformadores por el bajo nivel de carga.
- Con lo anterior se demostró que la variante #2 que plantea el reacomodo de las cargas es más eficiente económicamente y en la disminución de las pérdidas.
- Quedó evidenciada las grandes afectaciones que trae para las cargas industriales la mala calidad de la energía.
- Se corrobora una vez más la eficacia del Software Dycse en análisis de los sistemas industriales, así como la poderosa herramienta de optimización que posee.
- ➤ Es necesario contar con una mayor instrumentación para el registro y control de los consumos energéticos en los principales consumidores.

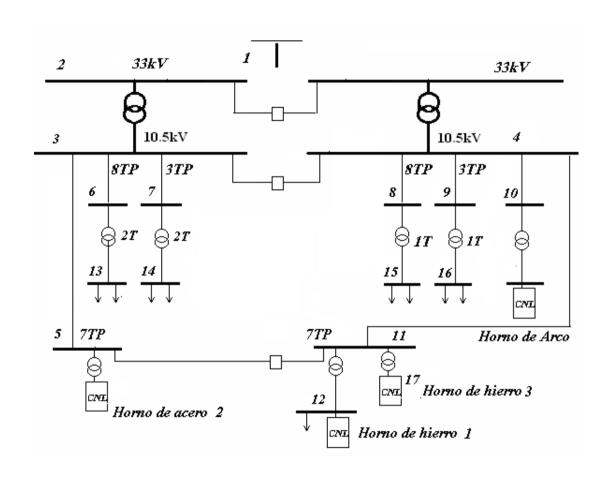
Recomendaciones

- Para disminuir el contenido de armónicos en la red se recomienda la utilización de filtros pasivos los cuales se demuestra en este trabajo su metodología para ser calculado.
- ➤ Es necesaria la capacitación, motivación y crear una cultura energética que contribuya de forma eficiente al ahorro de energía.
- > Se recomienda incluir en el presupuesto de la empresa la variante escogida en el presente diploma.
- Ubicar equipamiento confiable en los indicadores (Factor de potencia, tensión, corriente, potencia) generales a la entrada de energía de la empresa. (Subestación principal)

BIBLIOGRAFÍA

- 1. ABB, "Guía de los armónicos con accionamientos de corriente alterna". Guía técnica número 6,1992.
- Álvarez Argemiro y Gutiérrez Orlando "Armónicos: Efecto de los Filtros Pasivos sobre los Sistemas de Distribución de Energía Eléctrica", Proyecto de Grado dirigido por Gabriel Ordóñez Plata. Universidad Industrial de Santander. 2000
- 3. Aquino O. 'Programa para el análisis de redes eléctricas de estructura variable. Calidad de energía. Ing. Energética.' Vol XV N⁰ 3 pp 83-90. 1994.
- 4. Arciniega V. Franco A, "Regulación de armónicos en sistemas eléctricos industriales", 2004.
- 5. Baeza M. B ; García A. M.. Algoritmos para el ordenamiento de contingencias que provocan problemas de voltajes. Ing. Energética Vol XV pp 85-91. 1994.
- Balcells J., Lamich M. González D. Equipo de medida de calidad de la red eléctrica. Departamento d'Enginyeria Electrónica UPC. Campus de Terrassa. Barcelona .España. 2000.
- Caicedo M y Solano R "Armónicos en Sistemas de Distribución: Compensación de la Potencia Ficticia con Condensadores en Alimentadores de Distribución".
 Proyecto de Grado dirigido por Gilberto Carrillo Caicedo. Universidad Industrial de Santander.1999.
- 8. Carrillo G. "Introducción al Análisis de los Sistemas de Potencia". Ediciones UIS, Universidad Industrial de Santander, Bucaramanga. 1985.
- 9. Catalogo de Suministro Eléctrico y Equipamiento Eléctrico.1986
- 10. Chaparro Néstor y Villamizar Rodolfo "Sistemas de Distribución bajo Cargas No Lineales: Minimización de Pérdidas Mediante Filtros Predeterminados" Proyecto de Grado dirigido por Gilberto Carrillo Caicedo. Universidad Industrial de Santander. 1999
- 11. Cobas M. P. La calidad del suministro de la energía eléctrica ISPJAE. 2005.
- 12. Colome Arias Rafael. "Eficiencia y Restauración de cargas en las subestaciones de baja tensión en la Empresa CMDTE "Gustavo Machin Goush de Beche" 2001.
- 13. Colvo Moya Mario y del Nuevo "Filtros en la Red" http://www.energía.com.pdf.1999

- 14. Fuldner, Arthur H. "Upgrading Transmission Capacity for Wholesale Electric PowerTrade"http://www.eia.doe.gov/cneaf/pubs_html/feat_trans_capacity/w_sale.html, U. S. Energy Information Administration, 1999.
- 15. Gabriel Hernandez R. "Eficiencia en los Sistemas Eléctricos Industriales de baja tensión" T.D.T.M 2000.
- 16. González P.I; Estudio de portadores energéticos de la planta hornos de reducción en la Empresa Ernesto Che Guevara. Tesis de Maestría. ISMM. Moa 1999.
- 17. Grady W. M. Harmonic Power Flow Studies Ph.D Tesis Purdue University West Lafayette. IN.Agosto 1983.
- 18. Grupo de Eficiencia Energética de Moa (GEEM) Diagnostico energético al Combinado Mecánico del Níquel ISMM. Moa. 2000-2001.
- 19. Grupo de Trabajo Calidad de la Onda "Limitación de armónicos en las redes eléctricas españolas de baja tensión de distribución". Guía Técnica para la conexión a la red. UNESA, 1995.
- 20. Guía sobre la calidad de la onda en las redes eléctricas
- 21. Hernández Galicia, Julio A. y Rolando Nieva Gómez, "Planificación de la compensación reactiva mediante programación evolutiva", Reunión de Verano de Potencia 2000, IEEE Sección México, Julio 2000, Acapulco, Gro.
- 22. IEC.76. Power Trasformer.1993
- 23. Legrá A. Lobaina Software Dycse ISMM. Moa.
- 24. López M. L. Evaluación del sistema de suministro en el combinado mecánico de níquel. Tesis de grado Moa 2004
- 25. Mazorra C. "Compensación de Reactivo" 1986.
- 26. Mesarovich, M.: Fundamentación de la Teoría General de los Sistemas. Editorial MIR. URSS, pp. 422-436, 1996
- 27. Noider Gomez C.Estudio del consumo de portadores energéticos en la Empresa Mecánica del Níquel. T.D 2000
- 28. Norma IEEE 519
- 29. Parodi G. M. Reducción de armónicos mediante filtrado activo en la empresa mecánica del níquel. Tesis de maestría. Moa. 2004.


Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel.

Autor: Omar Figueredo Oliveros

30. Pérez A. I. Compensación de potencia reactiva en sistemas industriales mediante banco de capacitores. Tesis doctoral. Santa Clara. 1994.

Tema: Evaluación de la Calidad del Sistema de Suministro Eléctrico de la Empresa Mecánica del Níquel. **Autor:** Omar Figueredo Oliveros

Anexo #1 Monolineal después del reacomodo de carga (Variante #2)

Anexo 2 Levantamiento de Cargas de cada Taller

Tabla: Taller 04 Reparaciones Capitales Automotrices													
Nodo	C.C	Cargas	U (v)	I (A)	P (kW)		-	1	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)	
28	3	Grúa	440	115.99	39.42	32.41	51.03	0.77	2.50	2.41	0.96	1.45	
28	3	Bomba	440	14.71	5.50	3.41	6.47	0.85	25.43	15.76	6.30	9.46	
28	3	Grúa	440	189.00	61.79	55.65	83.16	0.74	1.73	1.56	0.62	0.93	
28	3	Lavadora	440	21.63	8.09	5.01	9.52	0.85	17.29	10.72	4.29	6.43	
28	3	Torno	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70	
28	3	Taladro	440	13.49	4.97	3.25	5.93	0.84	27.30	17.86	7.14	10.71	
28	3	Amoladora	440	19.96	7.36	4.79	8.78	0.84	18.48	12.02	4.81	7.21	
28	3	Prensa	440	7.44	2.68	1.87	3.27	0.82	48.50	33.85	13.54	20.31	
28	3	Grua	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Prensa	440	7.44	2.68	1.87	3.27	0.82	48.50	33.85	13.54	20.31	
28	3	Segueta	440	9.34	3.23	2.54	4.11	0.79	37.05	29.10	11.64	17.46	
28	3	Amoladora	440	19.96	7.36	4.79	8.78	0.84	18.48	12.02	4.81	7.21	
28	3	Prensa	440	67.30	23.69	17.77	29.61	0.80	5.23	3.92	1.57	2.35	
28	3	Prensa	440	68.82	25.92	15.65	30.28	0.86	5.47	3.30	1.32	1.98	
28	3	Carretilla Eléctrica	440	24.05	9.31	5.03	10.58	0.88	16.10	8.69	3.48	5.21	
28	3	Rampa	440	2.54	0.95	0.59	1.12	0.85	147.06	91.14	36.46	54.69	
28	3	Banda	440	62.63	22.87	15.37	27.56	0.83	5.83	3.92	1.57	2.35	
28	3	Grúa	440	414.22	130.81	126.91	182.26	0.72	0.76	0.74	0.30	0.44	
28	3	Grúa	440	476.68	154.58	141.76	209.74	0.74	0.68	0.62	0.25	0.37	
28	3	Taladro	440	12.98	4.80	3.10	5.71	0.84	28.49	18.40	7.36	11.04	
28	3	Taladro	440	13.49	4.97	3.25	5.93	0.84	27.30	17.86	7.14	10.71	
28	3	Torno	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70	
28	3	Carretilla Eléctrica	440	24.05	9.31	5.03	10.58	0.88	16.10	8.69	3.48	5.21	
28	3	Banda	440	24.22	8.63	6.25	10.66	0.81	15.00	10.65	4.26	6.39	
28	3	Prensa	440	67.30	23.69	17.77	29.61	0.80	5.23	3.92	1.57	2.35	
28	3	Prensa	440	37.18	13.98	8.50	16.36	0.85	10.11	6.15	2.46	3.69	
28	3	Grúa	440	193.73	58.69	61.82	85.24	0.69	1.56	1.65	0.66	0.99	
28	3	Grúa	440	125.74	42.35	35.60	55.32	0.77	2.68	2.25	0.90	1.35	
28	3	Taladro	440	33.12	10.74	9.85	14.57	0.74	9.79	8.98	3.59	5.39	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Grúa	440	9.77	3.31	2.74	4.30	0.77	34.69	28.74	11.50	17.25	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Grúa	440	67.30	23.69	17.77	29.61	0.80	5.23	3.92	1.57	2.35	
28	3	Cizalla	440	32.87	12.29	7.62	14.46	0.85	11.38	7.05	2.82	4.23	
28	3	Máq. Lavadora	440	15.22	5.43	3.93	6.70	0.81	23.41	16.95	6.78	10.17	
28	3	Rampa	440	4.76	1.78	1.10	2.09	0.85	78.61	48.72	19.49	29.23	
28	3	Mandrinadora	440	6.00	2.30	1.30	2.64	0.87	63.77	36.14	14.46	21.68	
28	3	Esmeriladora	440	5.12	1.66	1.53	2.25	0.74	63.19	58.25	23.30	34.95	
28	3	Grúa	440	2.89	0.95	0.84	1.27	0.75	114.40	100.54	40.22	60.32	
28	3	Máq. Tramar	440	67.49	26.28	13.83	29.70	0.88	5.77	3.04	1.21	1.82	
33	3	Máq. Soldar	440	865.00	342.54	165.90	380.60	0.90	0.46	0.22	0.09	0.13	
33	3	Banco p/cilindro	440	26.81	10.01	6.23	11.79	0.85	13.94	8.67	3.47	5.20	
33	3	Banco p/cilindro	440	55.53	20.94	12.58	24.43	0.86	6.79	4.08	1.63	2.45	
33	3	Banco Rodaje	440	536.12	191.23	138.12	235.89	0.81	0.67	0.48	0.19	0.29	

33	3	Banco p/Banda	440	55.36	21.92	10.62	24.36	0.90	7.15	3.46	1.39	2.08
33	3	Banco p/Puente tracero	440	148.07	60.56	24.04	65.15	0.93	2.76	1.10	0.44	0.66
33	3	Rectificadora de Soldadura	440	0.33	0.12	0.09	0.14	0.80	1070.89	803.16	321.27	481.90

Tabla: Taller 06 Construcciones Metálicas

Tabla : Taller 06 Construcciones Metálicas												
Nodo	C.C	Cargas	U (v)	I (A)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
25	1	Máquina de soldar	440	1.79	0.68	0.4	0.79	0.86	146.00	124.42	49.77	74.65
25	1	Rectificadora de soldadura	440	2.50	0.92	0.6	1.10	0.84	147.64	96.29	38.51	57.77
25	1	Curvadora de Chapa	440	46.88	18.14	9.82	20.63	0.88	8.25	4.47	1.79	2.68
25	1	Electromoladora	440	21.49	8.91	3.16	9.45	0.94	19.30	6.85	2.74	4.11
25	1	Martillo Forja	440	87.80	33.02	20.05	38.63	0.85	4.28	2.60	1.04	1.56
25	1	Taladro vertical	440	23.14	8.83	5.07	10.18	0.87	16.49	9.47	3.79	5.68
25	1	Tijera de Manivela	440	123.83	54.44	2.25	54.49	1.00	3.55	0.15	0.06	0.09
25	1	Cilindro de 3 masas	440	83.45	28.66	22.95	36.72	0.78	4.12	3.30	1.32	1.98
25	1	Cilindro de 3 rodillos	440	67.85	28.32	9.45	29.86	0.78	6.15	2.05	0.82	1.23
25	1	Biselador	440	246.35	96.05	50.24	108.40	0.93	1.58	0.83	0.82	0.50
25	1	Torno de roscar	440	17.40	6.57	3.93	7.66	0.86	21.70	12.98	5.19	7.79
25	1	Carretilla elct. 5t	440	14.08	4.97	3.7	6.20	0.80	25.06	18.66	7.46	11.20
	1		 									
25	1	Ventilador Centrífugo	440	43.65	14.75	12.3	19.21	0.77	7.74	6.46	2.58	3.87
25 25	1	Prensa Hidráulica Grúa 8t	440	44.45	15.55	11.86	19.56	0.80	7.87	6.00	2.40	3.60
25	1		440	176.12 309.69	68.52	36.2	77.49	0.89	2.21	1.17	0.47	0.70
	1	Grúa Puente 20t	 		120.72	63.2	136.26		1.26	0.66	0.26	0.40
25	1	Grúa puente	440	326.51	141.22	26.4	143.67	0.98	1.32	0.25	0.10	0.15
25	1	Cilindro de 4 masas	440	191.45	65.23	53.3	84.24	0.77	1.78	1.45	0.58	0.87
25	1	Cizalla de manivela	440	13.83	5.5	2.6	6.08	0.90	28.77	13.60	5.44	8.16
25	1	Martillo	440	178.89	60.57	50.27	78.71	0.77	1.89	1.57	0.63	0.94
25	1	Grúa consola 2t	440	18.30	6.99	4	8.05	0.87	20.86	11.94	4.78	7.16
25	1	Taladro Radial	440	163.09	71.72	2.4	71.76	1.00	2.70	0.09	0.04	0.05
25	1	Dobladora de 4 Rodillos	440	32.27	14.2	0	14.20	1.00	13.63	0.00	0.00	0.00
25	1	Curvadora de Chapa	440	36.84	16.21	0	16.21	1.00	11.94	0.00	0.00	0.00
25	1	Grúa Puente	440	127.14	45.57	32.45	55.94	0.81	2.82	2.01	0.80	1.20
25	1	Máquina Dobladora Chapa	440	35.57	15.64	0.6	15.65	1.00	1.30	0.47	0.19	0.28
25	1	Máquina Laminadora	440	27.15	11.87	1.34	11.95	0.99	16.10	1.82	0.73	1.09
25	1	Martillo	440	147.29	60.13	24.17	64.81	0.93	2.77	1.11	0.45	0.67
25	1	Grúa consola 2t	440	18.30	6.99	4	8.05	0.87	20.86	11.94	4.78	7.16
25	1	Taladro Radial	440	50.18	21.82	3.37	22.08	0.99	8.67	1.34	0.54	0.80
25	1	Dobladora de 4 Rodillos	440	38.09	16.6	2.3	16.76	0.99	11.44	1.59	0.63	0.95
25	1	Máquina Soldar	440	117	85	26.38	89.47	0.95	1.2	0.64	0.27	0.38
25	1	Máquina Soldar	440	117	85	26.38	89.47	0.95	1.2	0.64	0.27	0.38
25	1	Máquina Soldar	440	55	31	28.34	41.89	0.74	1.93	1.11	0.44	0.66
25	1	Máquina Soldar	440	55	31	28.34	41.89	0.74	1.93	1.11	0.44	0.66
25	1	Máquina Soldar	440	117	85	26.38	89.47	0.95	1.2	0.64	0.27	0.38
25	1	Máquina Soldar	440	22	12.3	11.4	16.84	0.73	4.88	7.85	3.14	4.71
25	1	Máquina Soldar	440	22	12.3	11.4	16.84	0.73	4.88	7.85	3.14	4.71
25	1	Máquina Soldar	440	28	12.6	19.95	23.77	0.53	2.53	6.94	2.78	4.16
25	1	Máquina Soldar	440	28	12.6	19.95	23.77	0.53	2.53	6.94	2.78	4.16
25	1	Máquina Soldar	440	50	30	26.46	40	0.75	2.1	3.2	1.28	1.92
25	1	Máquina Soldar	440	55	31	28.34	41.89	0.74	1.93	1.11	0.44	0.66
25	1	Máquina Soldar	440	55	31	28.34	41.89	0.74	1.93	1.11	0.44	0.66
25	1	Máquina Soldar	440	55	31	28.34	41.89	0.74	1.93	1.11	0.44	0.66
25	1	Máquina Soldar	440	117	85	26.38	89.47	0.95	1.93	0.64	0.44	0.38
20	_ '	Maqairia Oolaai				20.36 r 07 Ma			1.4	U.U 1	0.21	0.50

Tabla: Taller 07 Maquinado

Nodo	C.C Cargas	U (v)	I (A)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
------	------------	-------	-------	--------	----------	---------	-------	---------	---------	-----------	-----------

26	5	Torno Automático	440	121.10	42.63	31.97	53.28	0.80	2.70	2.18	0.87	1.31
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno de Revolver	440	25.77	9.79	5.73	11.34	0.86	14.74	8.62	3.45	5.17
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
26	5	Amoladora	440	19.96	7.36	4.79	8.78	0.84	18.48	12.02	4.81	7.21
26	5	Torno 1M63 122	440	28.42	9.90	7.64	12.51	0.79	12.25	9.46	3.78	5.68
26	5	Torno 16K20	440	68.65	26.75	14.02	30.20	0.89	5.68	2.98	1.19	1.79
26	5	Torno 16K20	440	68.65	26.75	14.02	30.20	0.89	5.68	2.98	1.19	1.79
26	5	Torno 16K20	440	68.65	26.75	14.02	30.20	0.89	5.68	2.98	1.19	1.79
26	5	Torno 16K20	440	68.65	26.75	14.02	30.20	0.89	5.68	2.98	1.19	1.79
26	5	Torno 16K20	440	76.18	28.63	17.44	33.52	0.85	4.93	3.00	1.20	1.80
26	5	Torno 16K20	440	76.18	28.63	17.44	33.52	0.85	4.93	3.00	1.20	1.80
26	5	Torno 16K20	440	76.18	28.63	17.44	33.52	0.85	4.93	3.00	1.20	1.80
26	5	Torno 16K20	440	76.18	28.63	17.44	33.52	0.85	4.93	3.00	1.20	1.80
26	5	Torno 16K20	440	49.26	18.84	10.72	21.68	0.87	7.76	4.42	1.77	2.65
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
26	5	Horno	440	30.62	12.13	5.87	13.47	0.90	12.93	6.26	2.51	3.76
23	4	Fresadora	440	60.82	25.54	7.99	26.76	0.95	6.90	2.16	0.86	1.30
23	4	Fresadora	440	109.05	44.47	18.02	47.98	0.93	3.74	1.52	0.61	0.91
23	4	Recortador	440	29.57	10.64	7.49	13.01	0.82	12.16	8.57	3.43	5.14
23	4	Recortador	440	29.57	10.64	7.49	13.01	0.82	12.16	8.57	3.43	5.14
23	4	Recortador	440	38.90	13.83	10.08	17.12	0.81	9.14	6.66	2.66	4.00
23	4	Fresadora	440	37.87	14.13	8.83	16.66	0.85	9.85	6.16	2.46	3.69
23	4	Fresadora	440	62.09	23.30	14.27	27.32	0.85	6.04	3.70	1.48	2.22
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Fresadora	440	54.65	20.79	12.09	24.05	0.86	6.96	4.05	1.62	2.43
23	4	Mortajadora	440	35.60	13.28	8.30	15.66	0.85	10.48	6.55	2.62	3.93
23	4	Talladora Engranaje	440	61.04	20.72	17.09	26.86	0.77	5.56	4.59	1.83	2.75
23	4	Talladora Engranaje	440	61.04	20.72	17.09	26.86	0.77	5.56	4.59	1.83	2.75
23	4	Fresadora	440	61.04	20.72	17.09	26.86	0.77	5.56	4.59	1.83	2.75

23	4	Torno 16K20	440	68.65	26.75	14.02	30.20	0.89	5.68	2.98	1.19	1.79
23	4	Torno 16K20	440	68.65	26.75	14.02	30.20	0.89	3.55	2.98	1.19	1.79
23	4	Mandrinadora	440	50.61	20.35	9.05	22.27	0.91	7.94	3.53	1.41	2.12
23	4	Mandrinadora	440	52.53	18.46	13.92	23.11	0.80	6.69	5.04	2.02	3.03
23	4	Torno vertical	440	175.17	64.89	41.58	77.07	0.84	2.11	1.36	0.54	0.81
23	4	Torno vertical	440	135.39	58.53	11.07	59.57	0.98	3.19	0.60	0.24	0.36
23	4	Torno vertical	440	248.79	90.54	61.53	109.47	0.83	1.46	0.99	0.40	0.60
23	4	Torno vertical	440	230.94	98.42	25.28	101.62	0.97	1.85	0.47	0.19	0.28
23	4	Mandrinadora	440	408.14	146.11	104.41	179.58	0.81	0.88	0.63	0.25	0.38
23	4	Mandrinadora	440	85.76	36.25	10.48	37.73	0.96	4.93	1.43	0.57	0.86
23	4	Mortajadora	440	43.94	16.72	9.70	19.33	0.87	8.66	5.02	2.01	3.01
23	4	Mortajadora	440	14.53	5.22	3.69	6.39	0.82	24.74	17.46	6.99	10.48
23	4	Mortajadora	440	16.18	5.26	4.80	7.12	0.74	20.09	18.31	7.33	10.99
23	4	Taladro Radial	440	10.04	3.39	2.83	4.42	0.77	33.64	28.07	11.23	16.84
23	4	Taladro Vertical	440	16.60	6.12	3.99	7.31	0.84	22.19	14.48	5.79	8.69
23	4	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
23	4	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
23	4	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
23	4	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
23	4	Torno 16K20	440	36.11	13.70	8.04	15.89	0.86	10.51	6.17	2.47	3.70
23	4	Prensa	440	7.44	2.68	1.87	3.27	0.82	48.50	33.85	13.54	20.31
23	4	Taladro Vertical	440	16.60	6.12	3.99	7.31	0.84	22.19	14.48	5.79	8.69
23	4	Taladro Radial	440	63.82	23.07	16.01	28.08	0.82	5.66	3.93	1.57	2.36
23	4	Taladro Vertical	440	13.49	4.97	3.25	5.93	0.84	27.30	17.86	7.14	10.71
23	4	Amoladora	440	19.88	7.33	4.77	8.75	0.84	18.56	12.07	4.83	7.24
23	4	Prensa	440	7.44	2.68	1.87	3.27	0.82	48.50	33.85	13.54	20.31
23	4	Rectificadora de sold	440	73.53	25.88	19.41	32.35	0.80	4.79	3.59	1.44	2.15
23	4	Rectificadora	440	33.75	12.58	7.89	14.85	0.85	11.04	6.93	2.77	4.16
23	4	Fresadora	440	44.17	16.81	9.75	19.44	0.87	8.62	5.00	2.00	3.00
23	4	Fresadora	440	35.12	12.82	8.63	15.45	0.83	10.39	7.00	2.80	4.20
23	4	Fresadora	440	30.15	10.25	8.42	13.26	0.77	6.52	9.26	3.70	5.56
23	4	Fresadora	440	52.90	20.32	11.36	23.28	0.87	7.26	4.06	1.62	2.44
23	4	Limadora	440	10.73	3.49	3.17	4.72	0.74	30.36	27.59	11.04	16.55
23	4	Mortajadora	440	14.50	5.13	3.79	6.38	0.80	24.40	18.05	7.22	10.83
23	4	Taladro Radial Rectificadora	440	63.82 73.53	23.07	16.01 19.41	28.08 32.35	0.82	5.66 4.79	3.93 3.59	1.57 1.44	2.36
23	4	Rectificadora	440	73.53	25.88	19.41	32.35	0.80	4.79	3.59	1.44	2.15
23	4	Rectificadora	440	36.17	13.57	8.31	15.92	0.85	10.37	6.35	2.54	3.81
23	4	Rectificadora	440	36.17	13.57	8.31	15.92	0.85	10.37	6.35	2.54	3.81
23	4	Rectificadora	440	36.17	13.57	8.31	15.92	0.85	10.37	6.35	2.54	3.81
23	4	Rectificadora	440	40.98	15.01	10.00	18.03	0.83	8.94	5.95	2.38	3.57
23	4	Rectificadora	440	44.84	16.39	10.99	19.73	0.83	8.15	5.46	2.18	3.28
23	4	Rectificadora	440	115.08	42.17	28.03	50.64	0.83	3.18	2.12	0.85	1.27
23	4	Rectificadora	440	56.58	20.41	14.25	24.89	0.82	6.38	4.45	1.78	2.67
24	7	Máq. Soldar	440	865.37	297.01	238.26	380.76	0.78	0.40	0.32	0.13	0.19
24	7	Carretilla Motor	440	18.17	5.36	5.93	7.99	0.67	16.23	17.98	7.19	10.79
24	7	Carretilla Motor	440	18.17	5.36	5.93	7.99	0.67	16.23	17.98	7.19	10.79
24	7	Carretilla Motor	440	18.17	5.36	5.93	7.99	0.67	16.23	17.98	7.19	10.79
24	7	Carretilla Motor	440	18.17	5.36	5.93	7.99	0.67	16.23	17.98	7.19	10.79
24	7	Grúa	440	192.16	68.53	49.52	84.55	0.81	1.86	1.34	0.54	0.80
24	7	Grúa	440	22.78	8.92	4.57	10.03	0.89	17.19	8.81	3.52	5.28
24	7	Grúa	440	11.29	4.30	2.49	4.97	0.87	33.71	19.55	7.82	11.73

24 7 Calentador 440 10.03 3.66 2.46 4.41 0.83 36.40 24.46 9.78 24 7 Granalladora 440 190.00 69.79 46.03 83.60 0.83 1.93 1.28 0.51 24 7 Grúa 440 192.16 68.83 49.52 84.55 0.81 1.86 1.34 0.54 24 7 Grúa 440 192.16 68.83 49.52 84.55 0.81 1.86 1.34 0.54 24 7 Grúa 440 14.13 5.53 2.84 6.22 0.89 27.71 14.19 5.68 24 7 Homo Trat Term 440 160.55 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7	14.68 0.77 0.80 0.80 8.52 1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Grúa 440 192.16 68.53 49.52 84.55 0.81 1.86 1.34 0.54 24 7 Grúa 440 192.16 68.53 49.52 84.55 0.81 1.86 1.34 0.54 24 7 Grúa 440 14.13 5.53 2.84 6.22 0.89 27.71 14.19 5.68 24 7 Horno Trat. Term 440 124.87 35.41 42.01 54.94 0.64 2.27 2.69 1.08 24 7 Bomba 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Bomba 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Bomba 440 130.58 50.98 2.650 57.45 0.89 2.99 1.55 0.62 24 7 <	0.80 0.80 8.52 1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Grúa 440 192.16 68.53 49.52 84.55 0.81 1.86 1.34 0.54 24 7 Grúa 440 14.13 5.53 2.84 6.22 0.89 27.71 14.19 5.68 24 7 Horno Trat. Term 440 124.87 35.41 42.01 54.94 0.64 2.27 2.69 1.08 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Bomba 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7	0.80 8.52 1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Grúa 440 14.13 5.53 2.84 6.22 0.89 27.71 14.19 5.68 24 7 Horno Trat. Term 440 124.87 35.41 42.01 54.94 0.64 2.27 2.69 1.08 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Bomba 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 <th>8.52 1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14</th>	8.52 1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Horno Trat. Term 440 124.87 35.41 42.01 54.94 0.64 2.27 2.69 1.08 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Bomba 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 2.76 2.29 0.91 24 <t< th=""><th>1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14</th></t<>	1.62 1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Bomba 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 39.17 32.46 12.98 24 7 Bemba 440 132.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra <th>1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14</th>	1.08 11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Bomba 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 39.17 32.46 12.98 24 7 Separador Húmedo 440 122.83 41.61 34.48 54.05 0.77 2.76 2.29 0.91 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24	11.60 1.08 0.93 0.93 19.47 1.37 4.14
24 7 Grúa 440 160.56 53.13 46.56 70.64 0.75 2.06 1.81 0.72 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 39.17 32.46 12.98 24 7 Bomba 440 122.83 41.61 34.48 54.05 0.77 2.76 2.29 0.91 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra 440 31.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Extract	1.08 0.93 0.93 19.47 1.37 4.14
24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 39.17 32.46 12.98 24 7 Separador Húmedo 440 122.83 41.61 34.48 54.05 0.77 2.76 2.29 0.91 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30	0.93 0.93 19.47 1.37 4.14
24 7 Separador Húmedo 440 130.58 50.98 26.50 57.45 0.89 2.99 1.55 0.62 24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 39.17 32.46 12.98 24 7 Separador Húmedo 440 122.83 41.61 34.48 54.05 0.77 2.76 2.29 0.91 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Grúa 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 <th>0.93 19.47 1.37 4.14</th>	0.93 19.47 1.37 4.14
24 7 Bomba 440 8.65 2.93 2.43 3.81 0.77 39.17 32.46 12.98 24 7 Separador Húmedo 440 122.83 41.61 34.48 54.05 0.77 2.76 2.29 0.91 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Extractor de Virutas 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 </th <th>19.47 1.37 4.14</th>	19.47 1.37 4.14
24 7 Separador Húmedo 440 122.83 41.61 34.48 54.05 0.77 2.76 2.29 0.91 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Extractor de Virutas 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 <th>1.37</th>	1.37
24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Extractor de Virutas 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 Apiladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9	4.14
24 7 Piedra 440 33.56 12.55 7.78 14.77 0.85 11.14 6.91 2.76 30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Extractor de Virutas 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 Amoladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9	
30 9 Tarugera 440 11.94 3.94 3.47 5.25 0.75 27.65 24.38 9.75 30 9 Extractor de Virutas 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 Amoladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9	
30 9 Extractor de Virutas 440 20.76 7.40 5.36 9.13 0.81 17.17 12.43 4.97 30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 Amoladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9	4.14
30 9 Grúa 440 21.45 8.40 4.30 9.44 0.89 18.25 9.35 3.74 30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 Amoladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 T	14.63
30 9 Grúa 440 10.38 4.06 2.08 4.57 0.89 37.73 19.33 7.73 30 9 Amoladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60	7.46
30 9 Amoladora 440 15.55 5.79 3.65 6.84 0.85 23.93 15.09 6.03 30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66	5.61
30 9 Apiladora 440 2.77 0.96 0.75 1.22 0.79 125.36 97.29 38.92 30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	11.60
30 9 Apiladora 440 9.51 3.05 2.86 4.18 0.73 33.74 31.65 12.66 30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	9.05
30 9 Prensa 440 11.94 3.83 3.59 5.25 0.73 26.91 25.19 10.08 30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	58.37
30 9 Taladro 440 2.51 0.77 0.79 1.10 0.70 122.78 125.26 50.11 30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	18.99
30 9 Torno 440 5.88 1.92 1.74 2.59 0.74 55.36 50.31 20.13 30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	15.12
30 9 Torno 440 4.84 1.60 1.41 2.13 0.75 68.13 60.08 24.03 30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	75.16
30 9 Acepilladora 440 4.15 1.42 1.14 1.83 0.78 82.66 66.32 26.53	30.19
	36.05
30 9 Fresa 440 31.88 11.75 7.65 14.03 0.84 11.57 7.53 3.01	39.79
	4.52
30 9 Lijadora 440 4.84 1.71 1.28 2.13 0.80 72.67 54.50 21.80	32.70
30 9 Cepilladora 440 14.01 4.93 3.70 6.17 0.80 25.12 18.84 7.54	11.30
30 9 Máq. Universal 440 6.23 2.58 0.93 2.74 0.94 66.41 24.10 9.64	14.46
30 9 Sierra 440 8.65 3.08 2.23 3.81 0.81 41.20 29.83 11.93	17.90
30 9 Sierra 440 17.30 6.17 4.46 7.61 0.81 20.60 14.91 5.97	8.95
30 9 Sierra 440 6.23 2.19 1.64 2.74 0.80 56.52 42.39 16.96	25.43
30 9 Sierra 440 6.23 2.19 1.64 2.74 0.80 56.52 42.39 16.96	25.43
30 9 Sierra 440 7.44 2.62 1.96 3.27 0.80 47.32 35.49 14.20	21.29
30 9 Máq. Soldar 440 43.25 15.22 11.42 19.03 0.80 8.14 6.10 2.44	3.66
30 9 Torno 440 4.84 1.71 1.28 2.13 0.80 72.67 54.50 21.80	
35 6 Alimentador 440 10.03 3.66 2.46 4.41 0.83 36.40 24.46 9.78	32.70

Tabla: Taller 08 Fundición

Nodo	C.C	Cargas	U (v)	I(A)	P (kW)	Q (kvVr)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
35	6	Tambor Secador	440	13.50	4.99	3.22	5.94	0.84	27.37	17.67	7.07	10.60
35	6	Apoyo	440	4.77	1.87	0.96	2.10	0.89	82.01	42.02	16.81	25.21
35	6	Apoyo	440	12.51	4.90	2.51	5.50	0.89	31.31	16.04	6.42	9.62
35	6	Aparejo	440	4.77	1.87	0.96	2.10	0.89	82.01	42.02	16.81	25.21
35	6	Mezclador Hormigón	440	10.03	3.75	2.33	4.41	0.85	37.27	23.10	9.24	13.86
35	6	Mezcladora	440	128.02	47.88	29.67	56.33	0.85	2.92	1.81	0.72	1.09
35	6	Mezcladora	440	128.02	47.88	29.67	56.33	0.85	2.92	1.81	0.72	1.09
35	6	Mezcladora	440	128.02	47.88	29.67	56.33	0.85	2.92	1.81	0.72	1.09
35	6	Moledora	440	3.81	1.49	0.76	1.67	0.89	102.89	52.71	21.08	31.63
35	6	Moledora	440	3.81	1.49	0.76	1.67	0.89	102.89	52.71	21.08	31.63

35	6	Moledora	440	3.81	1.49	0.76	1.67	0.89	102.89	52.71	21.08	31.63
35	6	Moledora	440	3.81	1.49	0.76	1.67	0.89	102.89	52.71	21.08	31.63
35	6	Carretilla Motor	440	18.17	5.36	5.93	7.99	0.67	16.23	17.98	7.19	10.79
35	6	Aparejo	440	4.77	1.87	0.96	2.10	0.89	82.01	42.02	16.81	25.21
35	6	Horno Resistencia	440	69.20	24.28	18.37	30.45	0.80	5.07	3.84	1.53	2.30
35	6	Corta Ladrillos	440	14.36	5.18	3.62	6.32	0.82	25.10	17.54	7.02	10.52
35	6	Criba Vibratoria	440	7.27	2.14	2.37	3.20	0.67	40.57	44.95	17.98	26.97
35	6	Trituradora	440	30.28	10.39	8.34	13.32	0.78	11.34	9.09	3.64	5.46
35	6	Sacadora de Macho	440	10.38	3.75	2.61	4.57	0.82	34.76	24.26	9.70	14.56
35	6	Molino	440	22.49	8.11	5.66	9.90	0.82	16.04	11.20	4.48	6.72
36	7	Horno Inducción	440	37.37	14.96	6.82	16.44	0.91	10.72	4.88	1.95	2.93
37	7	Horno Arcoeléctrico	440	38.93	14.56	9.02	17.13	0.85	9.61	5.95	2.38	3.57
38	7	Horno	440	579.55	224.40	121.12	255.00	0.88	0.67	0.36	0.14	0.22

Tabla : Carpintería, Plantillería y Compresores

Nodo	C.C	Cargas	U (v)	I (A)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
30	9	torno	440	13.71	5.56	2.34	6.03	0.92	15.00	12.45	4.98	7.47
		Plantillería	U (v)	I (A)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
30	9	Máquina Afiladora Univ.	440	3.05	1.2	0.6	1.34	0.89	68.00	64.53	25.81	38.72
30	9	Afiladora semiautomática	440	9.40	3.92	1.32	4.14	0.95	44.36	14.94	5.97	8.96
		Compresor	U (v)	I (A)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
29	9	Torno de roscar	440	22.44	7.6	6.3	9.87	0.77	15.10	12.52	5.01	7.51
29	9	Torno de roscar	440	22.44	7.6	6.3	9.87	0.77	15.10	12.52	5.01	7.51
29	9	Grúa Colgante 3T	440	28.14	9.45	8	12.38	0.76	11.93	10.10	4.04	6.06
29	9	Grúa Colgante 1T	440	37.63	12.8	10.5	16.56	0.77	9.04	7.42	2.97	4.45
29	9	Bomba Centrífuga	440	39.66	14.92	9.05	17.45	0.86	9.49	5.75	2.30	3.45
29	9	Ventilador centrífugo	440	29.75	10.8	7.4	13.09	0.82	12.20	8.36	3.34	5.02
29	9	Ventilador centrífugo	440	1.61	0.64	0.3	0.71	0.91	248.01	116.25	46.50	69.75
29	9	Grua Colgante de 1 Viga	440	16.72	6.04	4.2	7.36	0.82	21.61	15.02	6.01	9.01
29	9	Grúa Colgante 3T	440	26.48	9.53	6.7	11.65	0.82	13.60	9.56	3.82	5.73
29	9	Grúa Apiladora	440	4.72	1.87	0.9	2.08	0.90	84.06	40.46	16.18	24.27
29	9	Cepillo	440	26.59	10.3	5.55	11.70	0.88	14.57	7.85	3.14	4.71
29	9	Trompo Ø 0	440	34.48	12.5	8.6	15.17	0.82	10.51	7.23	2.89	4.34
29	9	Compresor	440	544.95	215.80	104.52	239.78	0.90	0.73	0.35	0.14	0.21
29	9	Compresor	440	544.95	215.80	104.52	239.78	0.90	0.73	0.35	0.14	0.21
29	9	Compresor	440	544.95	215.80	104.52	239.78	0.90	0.73	0.35	0.14	0.21

Tabla : Carpintería, Plantillería y Compresores

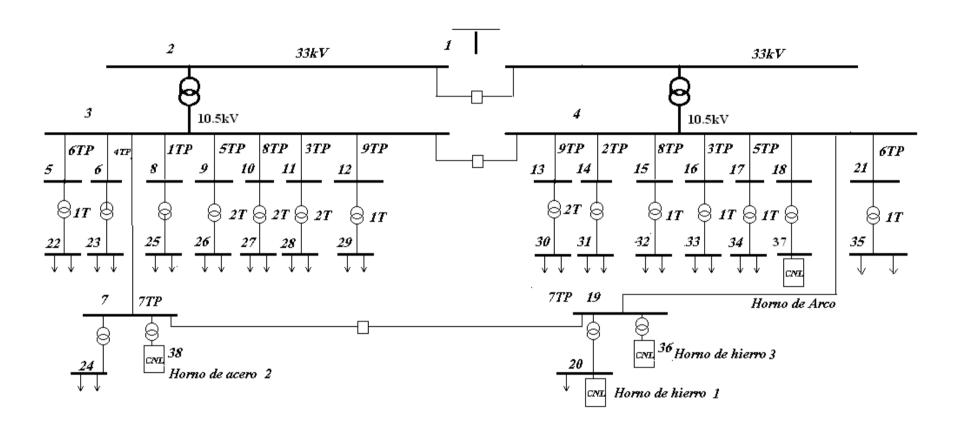
Nodo	C.C	Cargas	U (v)	I (a)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
29	9	Bomba	440	55.36	21.92	10.62	24.36	0.90	7.15	3.46	1.39	2.08
29	9	Bomba	440	55.36	21.92	10.62	24.36	0.90	7.15	3.46	1.39	2.08
29	9	Bomba	440	10.38	4.11	1.99	4.57	0.90	38.15	18.48	7.39	11.09
29	9	Bomba	440	181.30	74.99	27.22	79.77	0.94	2.28	0.83	0.33	0.50
29	9	Bomba	440	181.30	74.99	27.22	79.77	0.94	2.28	0.83	0.33	0.50
29	9	Bomba	440	145.32	53.07	35.66	63.94	0.83	2.51	1.69	0.68	1.01
29	9	Grúa	440	10.52	3.72	2.75	4.63	0.80	33.64	24.86	9.94	14.92

Tabla :Casa Bomba

ı	Nodo	C.C	Cargas	U (v)	I (A)	P (kW)	Q (kVar)	S (kVA)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
	29	9	Bomba	440	181.30	74.99	27.22	79.77	0.94	2.28	0.83	0.33	0.50
I	29	9	Bomba	440	181.30	74.99	27.22	79.77	0.94	2.28	0.83	0.33	0.50
	29	9	Bomba	440	60.20	21.99	14.78	26.49	0.83	6.07	4.08	1.63	2.45
I	29	9	Bomba	440	33.22	12.42	7.70	14.62	0.85	11.26	6.98	2.79	4.19
	29	9	Bomba	440	2.77	1.08	0.56	1.22	0.89	141.47	72.48	28.99	43.49
	29	9	Agitador	440	6.57	2.08	2.01	2.89	0.72	48.19	46.45	18.58	27.87

29	9	Compresor Acetileno	440	51.90	17.36	14.84	22.84	0.76	6.44	5.51	2.20	3.31
29	9	Compresor Acetileno	440	51.90	17.36	14.84	22.84	0.76	6.44	5.51	2.20	3.31
29	9	Bomba	440	16.26	6.37	3.26	7.16	0.89	24.08	12.34	4.93	7.40
29	9	Bomba	440	21.28	7.49	5.62	9.36	0.80	16.54	12.41	4.96	7.44
29	9	Ventilador	440	16.44	4.85	5.37	7.23	0.67	17.94	19.87	7.95	11.92
29	9	Ventilador	440	16.44	4.85	5.37	7.23	0.67	17.94	19.87	7.95	11.92
29	9	Máq.Comp.Balones	440	2.77	1.08	0.56	1.22	0.89	141.47	72.48	28.99	43.49
29	9	Generador Acetileno	440	2.94	1.00	0.83	1.29	0.77	115.20	95.46	38.18	57.27
29	9	Ventilador	440	0.52	0.19	0.13	0.23	0.83	703.66	472.86	189.15	283.72
29	9	Ventilador	440	0.52	0.19	0.13	0.23	0.83	703.66	472.86	189.15	283.72
29	9	Winche	440	32.87	12.00	8.07	14.46	0.83	11.11	7.47	2.99	4.48
29	9	Grua	440	142.71	52.46	34.51	62.79	0.84	2.58	1.69	0.68	1.02
29	9	Grúa	440	76.62	29.02	17.16	33.71	0.86	4.94	2.92	1.17	1.75
29	9	Ventilador	440	25.95	8.68	7.42	11.42	0.76	12.89	11.02	4.41	6.61
29	9	Ventilador	440	25.95	8.68	7.42	11.42	0.76	12.89	11.02	4.41	6.61
29	9	Ventilador	440	25.95	8.68	7.42	11.42	0.76	12.89	11.02	4.41	6.61
29	9	Ventilador	440	0.52	0.19	0.13	0.23	0.83	703.66	472.86	189.15	283.72
29	9	Amoladora	440	19.96	7.36	4.79	8.78	0.84	18.48	12.02	4.81	7.21
29	9	Taladro	440	5.02	1.55	1.58	2.21	0.70	61.39	62.63	25.05	37.58

Tabla :Escuela de Soldadura


Nodo	C.C	Cargas	U (v)	I (a)	P (kw)	Q (kvar)	S (kva)	cos &	R (ohm)	X (ohm)	X 2 (ohm)	X 0 (ohm)
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	12.2	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	18.9	11.6	3.78	12.2	0.95	8.72	4.92	1.97	2.95
29	9	Máquina de Soldar	440	42	14	11.31	18	0.78	4.71	6.76	2.07	4.06
29	9	Máquina de Soldar	440	13	7	6.71	9.7	0.72	4.37	13.82	5.53	8.29
29	9	Máquina de Soldar	440	13	7	6.71	9.7	0.72	4.37	13.82	5.53	8.29

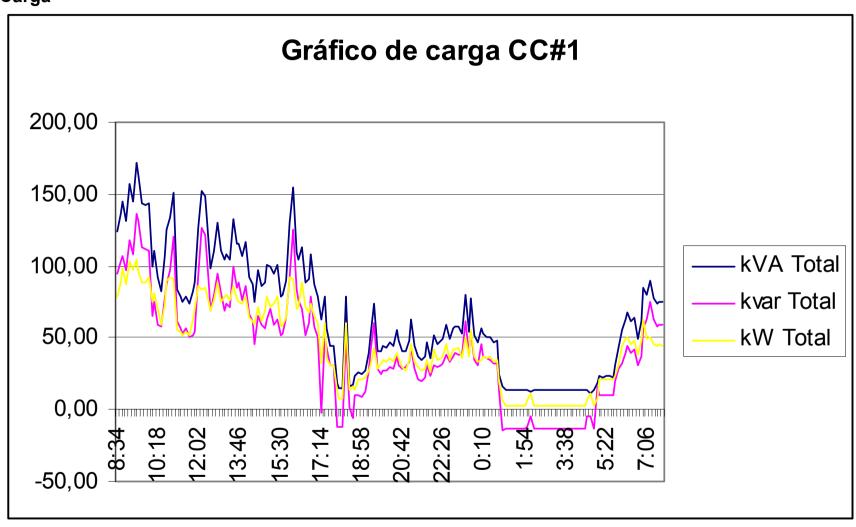
Taller 05. Reparaciones capitales Eléctricas

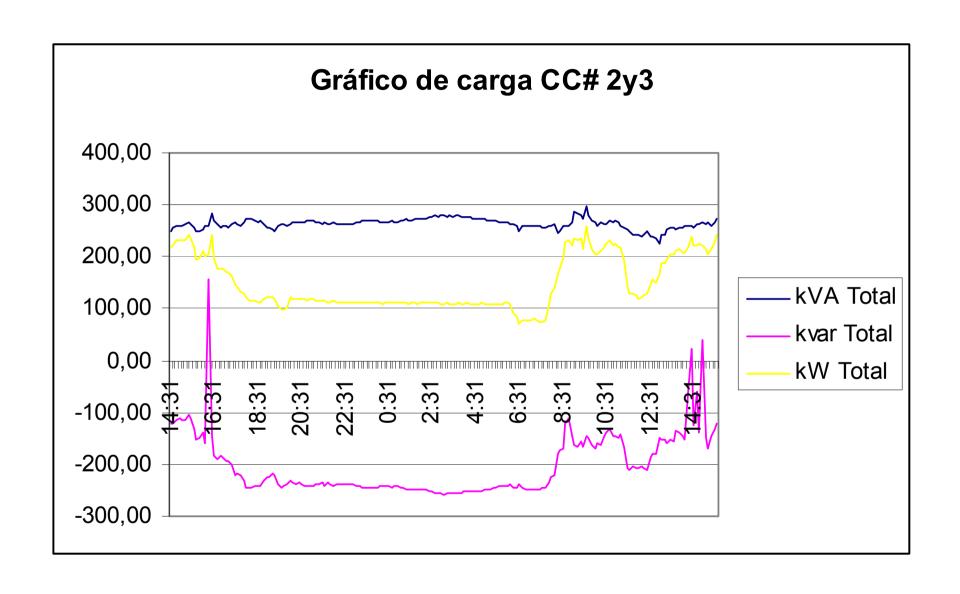
Noo	do	C.C	Cargas	U (V)	I (a)	P (kW)	Q (kVar)	S (kVA)	Cos φ	R (ohm)	X (ohm)	X ₂ (ohm)	X ₀ (ohm)
2.2	,	2	C / 20	440	124.07	42.0	24.52	54.00	0.70	2.70	2.21	0.00	1.22
33	3	3	Grúa 20	440	124.97	42.8	34.52	54.99	0.78	2.70	2.21	0.88	1.33
33	3	3	Grúa 12.5	440	235.17	71.77	74.54	103.48	0.69	1.30	1.35	0.54	0.81
33	3	3	Grúa 8	440	23.14	8.73	5.24	10.18	0.86	16.30	9.79	3.91	5.87
33	3	3	Balanc	440	57.19	20.1	15.14	25.16	0.8	6.15	4.63	1.85	2.78

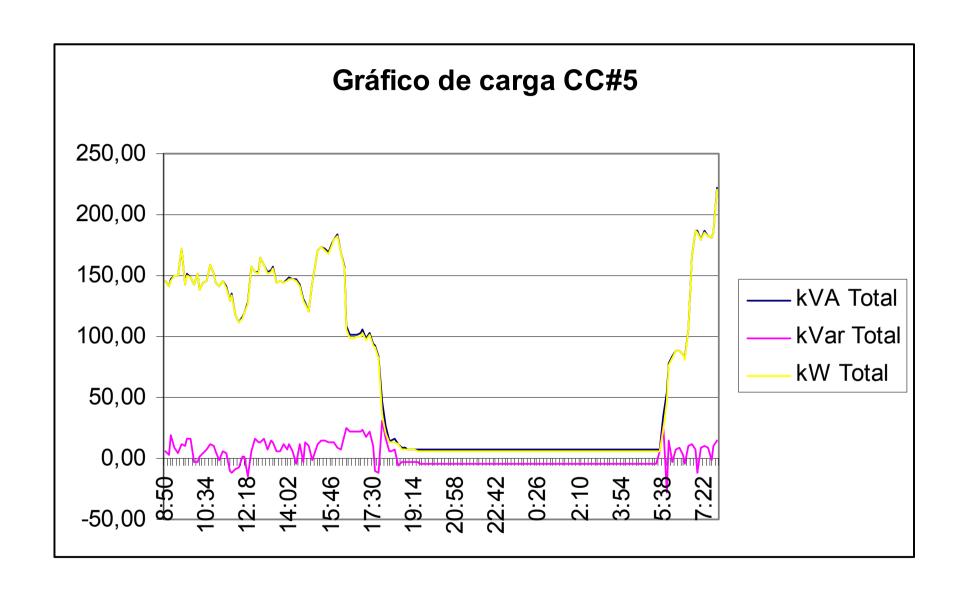
33	3	Torno	440	36.56	13.85	8.18	16.09	0.86	10.36	6.12	2.45	3.67
33	3	Grúa 5	440	24.13	8.95	5.71	10.62	0.84	15.37	9.81	3.92	5.88
33	3	Fresa	440	31.85	11.48	8.04	14.02	0.82	11.31	7.92	3.17	4.75
33	3	Plant R	440	55.48	20.21	13.69	24.41	0.83	6.57	4.45	1.78	2.67
33	3	Torno	440	63.83	25	12.8	28.09	0.89	6.14	3.14	1.26	1.88
33	3	Taladro	440	31.83	13.98	0.846	14.01	1	13.8	0.83	0.33	0.5
33	3	Prensa	440	10.14	3.16	3.15	4.46	0.71	30.73	30.63	12.25	18.38
33	3	H Quem	440	27.19	8.55	8.37	11.96	0.71	11.56	11.32	4.53	6.79
33	3	H seca	440	30.64	13.48	0	13.48	1	14.36	0	0	0
33	3	H seca A	440	123.54	48.17	25.19	54.36	0.89	3.16	1.65	0.66	0.99
33	3	Amolad	440	31.33	12.29	6.24	13.78	0.89	11.52	6.36	2.54	3.82
33	3	Taladro	440	14.81	5.53	3.45	6.52	0.85	25.2	15.72	6.29	9.43
33	3	Grúa	440	4.41	1.6	1.1	1.94	0.82	82.16	56.49	2.6	33.89

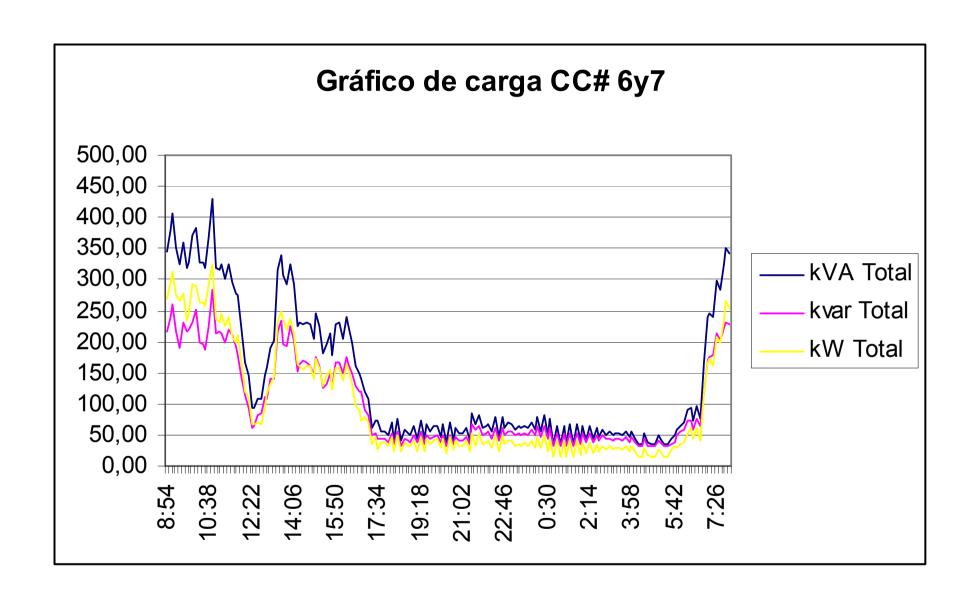
Anexo 3: Monolineal Actualizado de la Empresa Mecánica del Níquel

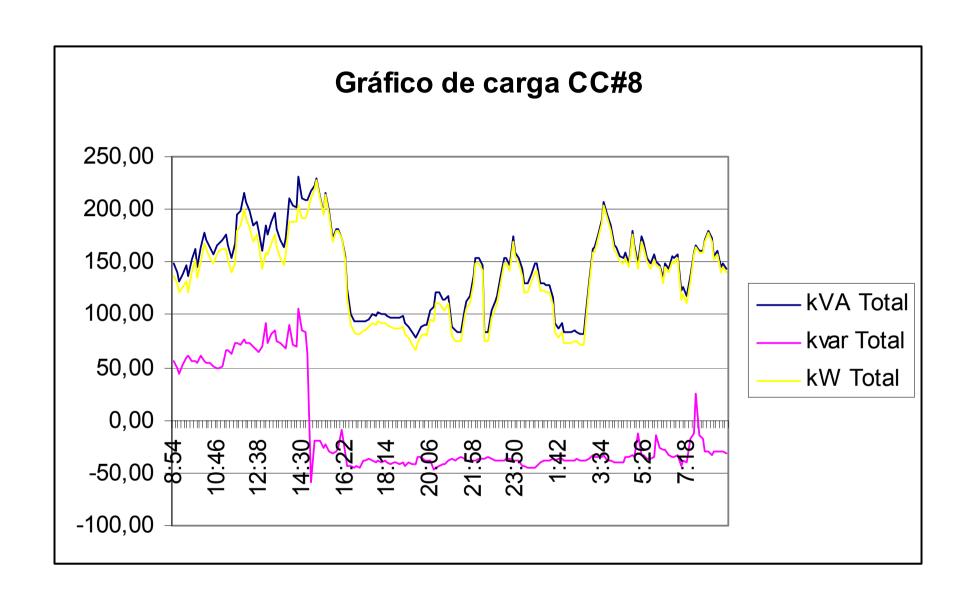
Anexo 4 Resultados de las Mediciones de de todos los CC


		sultados de								
Time		kvar Total			Umed (U)	Imed (I)	Frec (Hz)	Kc		THD% (U)
8:34	123,50	94,56	79,23	0,64	439,30	162,00	60,00	0,12	4,38	1,40
8:42	135,87	102,78	88,66	0,65	439,59	178,17	60,02	0,14	4,44	1,30
8:50	145,05	106,83	97,83	0,67	438,84	190,50	59,98	0,15	4,49	1,07
8:58	130,88	96,85	87,70	0,67	440,29	171,33	60,00	0,13	4,42	0,73
9:06	157,68	118,49	103,76	0,65	438,44	207,13	60,01	0,16	4,56	1,03
9:14	145,39	108,17	96,86	0,66	439,25	190,73	60,04	0,15	4,49	0,77
9:22	171,88	136,34	104,49	0,60	438,84	225,67	60,06	0,17	4,65	0,90
9:30	162,98	131,69	95,84	0,58	439,48	213,73	59,94	0,16	4,59	0,80
9:38	143,32	112,61	88,46	0,61	438,27	188,37	59,95	0,14	4,48	0,83
9:46	142,03	111,33	87,97	0,61	438,56	186,47	59,89	0,14	4,48	0,63
9:54	143,73	110,05	92,29	0,64	437,52	189,23	60,04	0,14	4,48	0,97
10:02	98,93	64,72	74,63	0,75	437,92	130,07	60,02	0,10	4,28	1,17
10:10	110,74	74,69	81,52	0,73	437,46	145,80	59,96	0,11	4,33	1,07
10:18	92,04	58,96	70,35	0,76	437,81	121,07	59,88	0,09	4,26	0,93
10:26	82,94	58,41	58,54	0,70	436,02	109,40	59,44	0,08	4,23	1,13
10:34	106,27	77,85	72,12	0,67	433,71	141,30	60,01	0,11	4,31	1,17
10:42	125,07	87,39	89,30	0,71	434,11	165,83	59,98	0,13	4,39	1,23
10:50	133,94	96,56	92,73	0,69	432,38	178,60	60,01	0,13	4,43	1,13
10:58	150,74	120,17	90,78	0,60	432,27	201,13	60,04	0,15	4,52	1,20
11:06	83,32	61,34	55,84	0,67	440,00	108,97	60,15	0,08	4,23	1,47
11:14	78,43	56,42	53,93	0,68	441,27	102,13	60,00	0,08	4,21	1,47
11:22	75,08	53,40	52,30	0,69	441,32	97,90	59,96	0,08	4,21	1,57
11:30	78,33	56,58	53,85	0,68	443,40	101,73	59,63	0,08	4,21	1,43
11:38	73,18	50,96	52,19	0,71	443,51	94,90	60,03	0,07	4,20	1,47
11:46	82,06	51,92	63,20	0,77	444,96	106,17	60,07	0,08	4,23	1,57
11:54	88,51	53,65	70,26	0,79	446,57	114,10	60,32	0,09	4,25	1,37
12:02	126,73	93,41	85,55	0,67	444,67	164,33	59,85	0,13	4,40	1,13
12:10	151,76	126,85	83,24	0,54	444,78	196,70	59,96	0,15	4,53	0,93
12:18		121,19	85,31	0,57	444,32	192,23	59,97	0,15	4,51	0,77
12:26		87,95	74,98	0,64	441,73	150,70	60,08	0,12	4,35	0,63
12:34	98,27	69,35	69,33	0,70	443,51	127,67	59,99	0,10	4,28	0,70
12:42	110,08	79,70	75,66	0,68	442,42	143,67	59,81	0,11	4,33	0,80
12:50		95,19	88,59	0,68	446,17	168,00	60,05	0,13	4,42	0,83
12:58		81,19	75,37	0,68	448,88	142,17	60,01	0,11	4,33	0,80
13:06		69,05	78,16	0,74	449,17	133,87	60,04	0,10	4,30	0,97
13:14		73,81	79,46	0,73	444,96	140,50	60,22	0,11	4,32	1,00
13:22	104,87	71,45	76,64	0,73	442,02	136,63	59,96	0,10	4,30	1,13
13:30	132,02	99,83	86,30	0,65	440,17	173,10	59,96	0,13	4,42	1,30
13:38		85,39	77,70	0,67	439,94	151,13	60,07	0,12	4,35	1,20
13:46		88,29	75,01	0,64	438,21	152,83	59,96	0,12	4,35	1,33
13:54	106,40	76,69	73,52	0,69	436,65	140,50	60,00	0,11	4,31	1,30
14:02	116,26	85,60	78,56	0,67	434,92	153,90	60,05	0,12	4,35	1,37
14:10		67,03	63,92	0,68	434,52	123,23	59,88	0,09	4,26	1,37
14:18		61,58	61,82	0,70	434,63	115,77	60,02	0,09	4,24	1,47
14:26		45,31	59,11	0,79	434,63	98,93	60,03	0,07	4,20	1,47
14:34		65,69	71,87	0,73	436,77	128,53	59,99	0,10	4,28	1,43
14:42		58,69	62,00	0,72	448,82	109,80	59,92	0,09	4,24	0,90
14:50	89,00	56,59	68,42	0,76	448,94	114,10	60,01	0,09	4,25	0,90


14:58	100,53	62,90	78,24	0,77	445,01	130,27	60,07	0,10	4,29	1,40
15:06	99,73	69,64	71,14	0,71	440,63	130,50	59,92	0,10	4,29	1,10
15:14	94,13	58,69	73,35	0,77	440,86	123,00	59,98	0,09	4,27	1,27
15:22	101,02	63,32	78,52	0,77	438,73	132,60	59,96	0,10	4,29	1,67
15:30	78,27	52,06	58,02	0,74	441,15	102,13	59,87	0,08	4,21	0,97
15:38	80,30	53,55	59,47	0,74	441,84	104,47	59,93	0,08	4,22	0,93
15:46	89,94	63,47	63,44	0,70	443,75	116,87	60,04	0,09	4,25	1,23
15:54	130,34	92,35	91,92	0,70	448,47	167,33	60,11	0,13	4,42	1,40
16:02	154,51	124,79	91,06	0,58	440,57	202,03	60,05	0,15	4,54	1,40
16:10	109,84	84,07	70,57	0,64	440,46	143,70	60,04	0,11	4,32	1,57
16:18	104,73	76,47	71,50	0,68	442,65	136,47	60,01	0,10	4,30	1,43
16:26	113,38	70,47	88,78	0,78	442,53	147,77	60,18	0,11	4,34	1,23
16:34	88,77	52,06	71,82	0,80	443,80	114,90	59,93	0,09	4,25	1,50
16:42	90,76	60,27	67,80	0,74	444,44	117,50	59,89	0,09	4,25	1,53
16:50	108,26	78,73	74,28	0,68	443,05	140,93	59,74	0,11	4,32	1,30
16:58	87,25	57,95	65,08	0,74	443,23	113,63	59,99	0,09	4,24	1,33
17:06	78,80	49,89	60,79	0,77	443,23	102,37	59,92	0,08	4,22	0,93
17:14	63,30	-2,23	32,67	-0,89	34,14	98,27	-51,82	0,06	4,17	12,27
17:22	78,80	49,89	60,79	0,77	443,23	102,37	59,92	0,08	4,22	0,93
17:30	56,23	43,27	35,26	0,62	442,59	73,17	60,03	0,06	4,16	1,03
17:38	44,11	30,49	31,34	0,71	442,53	57,63	59,86	0,04	4,14	1,20
17:46	43,82	31,09	30,36	0,69	442,76	57,00	60,06	0,04	4,14	1,40
17:54	18,81	-12,17	13,65	-0,72	446,28	24,00	59,99	0,02	4,11	1,57
18:02	14,52	-11,74	7,37	-0,50	447,84	18,47	59,96	0,01	4,10	1,60
18:10	14,58	-11,50	8,03	-0,55	449,22	18,67	60,03	0,01	4,10	1,50
18:18	78,80	49,89	60,79	0,77	443,23	102,37	59,92	0,08	4,22	0,93
18:26	16,07	1,72	13,14	0,81	449,11	20,43	59,91	0,02	4,10	1,40
18:34	17,13	-6,00	15,92	-0,92	448,70	21,67	60,11	0,02	4,11	1,77
18:42	23,41	10,32	14,18	0,60	448,53	29,73	59,96	0,02	4,11	1,60
18:50	26,43	9,90	21,62	0,81	448,30	33,80	60,00	0,03	4,11	1,80
18:58	25,06	8,56	21,02	0,83	448,07	32,10	59,98	0,03	4,11	1,67
19:06	26,65	12,97	22,02	0,82	447,95	34,23	59,93	0,03	4,11	1,60
19:14	39,11	27,51	26,89	0,68	447,03	50,17	59,92	0,04	4,13	1,47
19:22	51,47	40,26	31,26	0,60	446,17	66,37	60,01	0,05	4,15	1,17
19:30	73,80	59,72	42,81	0,58	444,26	95,73	59,88	0,07	4,20	1,43
19:38	40,81	28,78	28,15	0,68	444,73	52,73	59,86	0,04	4,13	1,33
19:46	41,05	24,29	32,53	0,79	444,38	52,97	60,33	0,04	4,13	1,77
19:54	43,86	27,07	34,07	0,77	444,78	56,57	60,05	0,04	4,14	1,57
20:02	43,70	27,62	33,45	0,76	444,32	56,57	59,88	0,04	4,14	1,57
20:10	46,31	29,34	35,46	0,76	444,78	59,77	59,89	0,05	4,14	1,60
20:18	44,41	29,00	33,20	0,74	444,84	57,43	59,94	0,04	4,14	1,60
20:26	54,99	37,40	39,97	0,72	445,30	71,03	60,21	0,05	4,16	1,60
20:34	47,68	30,87	35,96	0,75	445,94	61,47	60,06	0,05	4,14	1,37
20:42	41,29	28,55	29,40	0,71	447,09	53,13	60,25	0,04	4,13	1,53
20:50	40,57	29,31	27,58	0,67	445,71	52,33	59,98	0,04	4,13	1,67
20:58	47,66	32,89	34,11	0,71	445,88	61,50	59,95	0,05	4,14	1,77
21:06	63,32	43,58	45,69	0,72	442,13	82,33	59,86	0,06	4,17	1,53
21:14	44,83	29,00	33,85	0,75	437,63	58,93	60,08	0,04	4,14	1,23
21:22	36,73	20,93	29,78	0,81	438,73	48,07	60,00	0,04	4,13	1,20
21:30	34,58	20,08	27,65	0,79	439,59	45,30	60,39	0,03	4,12	1,30
21:38	37,24	22,85	28,89	0,77	439,82	48,70	59,88	0,04	4,13	1,53
21:46	46,83	31,00	34,70	0,74	440,17	61,27	60,05	0,05	4,14	1,37


21:54	35,24	23,39	25,87	0,73	439,88	45,97	50.02	0.04	4,12	1 17
22:02	52,06	30,42	41,95	0,73	438,15	68,53	59,93 60,09	0,04	4,12	1,47 1,17
22:10	46,18	30,42	34,71	0,80	438,32	60,40	59,96	0,05	4,13	1,17
22:18	47,90	30,68	36,35	0,75	443,69	62,13	60,09	0,05	4,14	1,20
22:26	49,19	32,57	36,45	0,73	454,30	62,33	59,98	0,05	4,14	1,07
22:34	59,61	38,56	45,15	0,74	454,59	75,53	60,04	0,05	4,13	1,40
22:42	48,94	33,88	34,89	0,73	454,59	61,93	59,89	0,05	4,17	1,40
22:50	56,72	37,57	42,14	0,71	455,16	71,70	60,03	0,05	4,14	1,17
22:58	58,03	39,46	42,14	0,74	456,49	73,17	60,03	0,06	4,16	1,30
23:06	58,17	38,24	43,49	0,72	450,49	73,17	60,18	0,06	4,16	1,33
23:14	52,75	38,84	35,28	0,74	458,45	66,37	59,87	0,00	4,15	1,63
23:22	79,74	61,27	50,78	0,63	457,70	100,27	60,18	0,08	4,22	1,20
23:30	53,69	38,30	37,22	0,69	459,66	67,23	59,90	0,05	4,15	1,30
23:38	77,20	54,01	54,93	0,71	459,14	96,83	60,06	0,08	4,21	1,17
23:46	51,69	35,17	37,57	0,71	460,70	64,67	60,78	0,05	4,15	1,00
23:54	46,39	31,33	33,86	0,72	457,41	58,50	59,92	0,05	4,14	1,37
0:02	56,95	45,23	34,25	0,60	453,38	72,33	59,99	0,06	4,16	1,10
0:10	52,71	37,37	36,83	0,69	455,16	66,80	59,98	0,05	4,15	0,90
0:18	50,73	35,91	35,44	0,69	457,70	63,80	60,13	0,05	4,15	1,53
0:16	50,73	34,17	37,39	0,73	457,70	64,03	59,94	0,05	4,15	1,30
0:34	46,92	32,01	33,90	0,73	452,28	59,73	59,63	0,05	4,14	1,07
0:42	47,63	32,70	34,24	0,71	452,11	60,63	59,92	0,05	4,14	1,13
0:50	25,04	13,23	20,32	0,81	453,72	31,67	60,01	0,03	4,11	1,10
0:58	15,85	-14,39	6,26	-0,39	451,70	19,97	59,84	0,02	4,10	1,13
1:06	14,20	-13,77	2,76	-0,19	450,67	18,07	60,06	0,01	4,10	1,00
1:14	14,12	-13,70	2,73	-0,19	449,86	17,83	59,97	0,01	4,10	0,93
1:22	13,94	-13,50	2,75	-0,19	449,86	17,60	59,58	0,01	4,10	0,83
1:30	13,94	-13,50	2,76	-0,19	450,49	17,60	59,80	0,01	4,10	1,00
1:38	13,87	-13,42	2,78	-0,20	450,72	17,40	59,85	0,01	4,10	1,03
1:46	14,23	-13,80	2,77	-0,19	451,53	18,07	59,93	0,01	4,10	0,93
1:54	14,12	-13,68	2,80	-0,19	451,53	17,60	59,99	0,01	4,10	0,93
2:02	13,34	-11,81	5,89	-0,44	451,76	16,80	60,05	0,01	4,10	0,80
2:10	12,10	-4,49	11,18	-0,92	451,53	15,30	59,94	0,01	4,10	0,93
2:18	14,04	-13,48	3,28	-0,23	452,16	17,83	60,03	0,01	4,10	0,93
2:26	14,26	-13,83	2,76	-0,19	452,16	18,07	59,96	0,01	4,10	1,07
2:34	14,13	-13,69	2,79	-0,19	451,99	17,60	60,18	0,01	4,10	0,90
2:42	14,17	-13,73	2,78	-0,19	451,99	17,60	60,04	0,01	4,10	0,97
2:50	14,17	-13,73	2,80	-0,19	452,40	17,83	59,85	0,01	4,10	1,07
2:58	13,92	-13,37	3,18	-0,22	451,93	17,40	59,97	0,01	4,10	1,10
3:06	13,92	-13,37	3,17	-0,22	452,11	17,60	59,64	0,01	4,10	1,20
3:14	13,94	-13,39	3,18	-0,22	451,93	17,40	59,95	0,01	4,10	1,17
3:22	14,06	-13,52	3,17	-0,22	452,11	17,60	60,00	0,01	4,10	1,17
3:30	14,03	-13,51	3,11	-0,22	451,99	17,60	60,00	0,01	4,10	0,93
3:38	14,23	-13,79	2,78	-0,19	452,51	17,83	60,34	0,01	4,10	0,90
3:46	14,28	-13,85	2,79	-0,19	452,28	18,07	60,23	0,01	4,10	1,00
3:54	14,08	-13,63	2,81	-0,19	451,76	17,60	59,66	0,01	4,10	1,17
4:02	13,87	-13,41	2,80	-0,20	451,41	17,40	59,72	0,01	4,10	1,17
4:10	14,04	-13,59	2,80	-0,19	451,76	17,60	59,96	0,01	4,10	1,10
4:18	14,24	-13,80	2,77	-0,19	451,76	18,07	59,95	0,01	4,10	1,17
4:26	14,10	-13,65	2,78	-0,19	451,76	17,60	59,96	0,01	4,10	1,07
4:34	13,12	-4,50	6,04	-0,46	451,01	16,57	59,57	0,01	4,10	1,27
4:42	11,87	-4,15	11,06	-0,93	450,49	15,10	59,97	0,01	4,10	1,23


4:50	14,08	-13,55	3,19	-0,22	451,13	17,83	60,23	0,01	4,10	1,20
4:58	18,21	16,60	7,36	0,40	451,24	23,20	59,99	0,02	4,11	1,07
5:06	23,25	10,47	20,60	0,88	449,97	29,57	60,02	0,02	4,11	1,27
5:14	22,87	9,78	20,54	0,89	449,57	29,37	59,90	0,02	4,11	1,23
5:22	22,99	9,88	20,62	0,89	448,76	29,37	59,76	0,02	4,11	1,13
5:30	23,02	10,09	20,55	0,89	448,19	29,37	59,76	0,02	4,11	1,23
5:38	22,76	9,63	20,51	0,90	448,13	28,97	59,76	0,02	4,11	1,30
5:46	30,76	20,09	22,99	0,74	447,21	39,57	60,11	0,03	4,12	1,07
5:54	42,55	28,98	30,46	0,71	446,34	54,67	60,04	0,04	4,13	1,27
6:02	55,26	32,33	44,54	0,80	444,84	71,70	59,54	0,06	4,16	1,50
6:10	63,08	39,73	48,73	0,77	441,38	82,17	59,58	0,06	4,17	1,37
6:18	67,94	44,54	51,08	0,75	450,38	87,03	60,52	0,07	4,19	1,10
6:26	61,24	40,00	46,19	0,75	456,43	77,23	59,95	0,06	4,17	1,53
6:34	64,14	42,16	48,20	0,75	454,93	81,07	59,89	0,06	4,18	1,67
6:42	49,00	31,03	37,63	0,76	454,30	62,10	60,11	0,05	4,14	1,70
6:50	61,22	37,61	48,12	0,78	452,28	77,87	60,04	0,06	4,17	1,53
6:58	84,44	56,80	62,39	0,73	451,36	107,93	59,97	0,08	4,23	1,57
7:06	80,25	62,83	49,71	0,61	449,80	102,80	60,07	0,08	4,22	1,30
7:14	90,28	75,03	50,03	0,55	449,92	115,37	60,29	0,09	4,25	1,13
7:22	77,28	62,47	45,29	0,58	449,86	98,97	59,97	0,08	4,21	1,17
7:30	73,59	58,25	44,75	0,60	449,11	94,27	60,13	0,07	4,20	1,17
7:38	74,54	59,27	44,98	0,60	448,42	95,73	59,97	0,07	4,20	1,20
7:46	74,50	59,53	44,58	0,59	448,13	95,53	60,05	0,07	4,20	1,27


Anexo 5 Gráficos de Cargas de los Centros de Carga

