

Ministerio de la Educación Superior Instituto Superior Minero Metalúrgico de Moa Facultad: Metalurgia – Electromecánica

Efecto de la variación de la velocidad de giro del molino en los indicadores energo - tecnológicos

Trabajo de Diploma en Opción al Título de Ingeniero en Metalurgia y Materiales

Autor: Daniela García Figueredo

Moa-2019

Ministerio de la Educación Superior Instituto Superior Minero Metalúrgico de Moa Facultad: Metalurgia – Electromecánica

Efecto de la varíación de la velocidad de **gíro** del molíno en los indicadores <mark>en</mark>ergo - tecnológicos

Trabajo de Diploma en Opción al Título de Ingeniero en Metalurgia y Materiales

Autor: Daniela García Figueredo

Tutor: Prof. Títular. Alfredo Lázaro Coello Velázquez Dr.C

Prof. Titular. Pedro Enrique Beyris Mazar Dr.C

Ms.C Rogelio Lázaro Ramentol Cruz

Moa-2019

Declaración de Autoría:

Yo: Ing. Daniela García Figueredo

Autora de este trabajo de diploma, certifico su propiedad intelectual a favor del Instituto Superior Minero Metalúrgico de Moa ´´Dr. Antonio Núñez Jiménez´´, el cual podrá hacer uso del mismo con la finalidad que estime conveniente.

Daniela García Figueredo Autor Dr. C Alfredo Lázaro Coello Velázquez

Tutor

Dr. C Pedro Enrique Beyris Mazar
Tutor

Sunca me he tenido por ingeniero o inventor, solamente me considero un promotor y agitador de ideas.

Enzo Forrari

Agradecimientos

A mis padres Marco Rivero Zaldívar e Imandra Figueredo Arencibia como recompensa por su esfuerzo, dedicación y confianza cuando la meta parecía imposible. Con todo amor y cariño aquí está la culminación de cinco años de sacrificios, alegrías y tristezas. A mi abuela Silvia, a mis tías, primos, mis suegros (Zaida y Gabriel) y familia en general por haberme alentado en mi formación como profesional y muy importante, a todos los que de una forma u otra han aportado un granito de arena a lo largo del camino. En la recta final a Loraine, Gutiérrez, Legrá, Hugo, Isabel, Alicia y en especial a mis tutores Pedro Enrique y Alfredo Coello. Eternamente le agradezco a mis amistades y en particular a Lizandra y Grismailis que han sido lo más sincero que he podido cultivar todo este tiempo y a mi novio Gabriel Méndez Urtate por soportar mis malcriadeces y ser el toque de aliento que necesitaba. A todos gracias.

RESUMEN

Se realizó el estudio del efecto de la velocidad de giro del molino con el objetivo de analizar los indicadores energo-tecnológicos. Para ello las muestras fueron tomadas con la participación de tres yacimientos: Camarioca Este (CE), Yagrumaje Norte (YN) y Yagrumaje Sur (YS). La composición granulométrica del producto alimentado al molino se ajustó al modelo Rosin–Rammler-Spearling (RRS) en el cual por la forma de la curva del producto inicial prevalecen los granos gruesos. Su tendencia coincide con la tendencia de las curvas granulométrica de los productos molidos a diferentes velocidades críticas. La energía específica y la potencia consumida por el motor del molino aumentan con el incremento de la velocidad crítica hasta alcanzar un valor máximo y luego disminuye con el sucesivo incremento de esta última. La clase -149 µm disminuye al aumentar la velocidad crítica. Las restantes dos clases siguen la misma regularidad al aumentar este último parámetro, ambas aumentan hasta un máximo (80 % de la velocidad crítica) para luego disminuir.

Palabras claves: Molino, composición granulométrica.

ABSTRACT

The study of the effect of the velocity of spin of the mill for the sake of examining indicators itself technological. The signs were taken for it with the participation of three deposits: Camarioca East (CE), Yagrumaje Norte (YN) and Yagrumaje Sur (YS). The grain size of the product fed to the mill adjusted to the model Rosin – Rammler-Spearling (RRS) in which for the way of the curve of the initial product the coarse grains prevail. His tendency agrees with the tendency of the curves grain of the products ground to different critical speeds. The specific energy and the potency consumed by the mill's motor increase in with the increment the critical speed to attain a maximum value and next it diminishes with the successive last increment of this. The classroom - 149 the m decreases when increasing the critical speed. The remaining two classrooms follow the same regularity when increasing this last parameter, both increase to a peak (80 % of critical speed) stops next diminishing.

Key words: mill, grain size

ÍNDICE

INTRODUCCIÓN	4
CAPÍTULO 1. MARCO TEÓRICO CONCEPTUAL	7
1.1 Antecedentes de la investigación	7
1.2 Características del mineral laterítico.	11
1.2.1 Formación de la laterita	. 12
1.3 Aspectos generales del proceso de molienda de minerales	13
1.4 Energía y reducción de tamaño. Medida de la reducción de tamaño	15
1.5 Energía de rotura	. 16
1.6 Llenado con bolas a los molinos	. 16
CAPÍTULO 2. MATERIALES Y MÉTODOS	. 17
2.1 Toma y preparación de las muestras de mineral laterítico	. 17
2.2 Metodología para determinar la carga de bolas, y la masa a alimentar molino	
2.3 Planificación de los experimentos	. 25
2.4 Metodología para la determinación de la composición granulométrica	. 27
2.4.1 Análisis de tamiz	. 27
2.4.2 Procedimiento del análisis de tamiz por vía húmeda	. 27
2.5 Funciones de representación	. 28
2.5.1 Función de Rosin – Rammler-Spearling	. 29
2.6 Equipos e instrumentos utilizados	30
CAPÍTULO 3. ANÁLISIS DE LOS RESULTADOS	. 35
3.1 Resultado de los cálculos los indicadores del molino	. 35
3.2 Influencia de la velocidad crítica en la potencia consumida por el molino	. 35
3.3 Influencia de la velocidad crítica en la energía específica consumida por emolino.	
3.4 Influencia de la velocidad crítica en la distribución granulométrica	. 43
CONCLUSIONES FINALES	. 48
RECOMENDACIONES	. 49
BIBLIOGRAFÍA	. 50
ANEYOS	5/

INTRODUCCIÓN

La industria metalúrgica requiere de tecnologías y materias primas que generan altos desembolsos y producciones de alto valor agregado a bajo costo. El empleo de combustibles más baratos ha sido una de las principales estrategias para responder a la problemática Pérez (2012).

La molienda de minerales es considerada un verdadero coloso energético, consume aproximadamente el 3% de toda la energía que producen los países industrializados, de ahí que en términos de costos, la etapa de molienda es la más significativa en el procesamiento de los minerales Coello (1993)

Las menas lateríticas se forman a partir de los procesos de meteorización de las rocas ultrabásicas que luego de su preparación mecánica y su reducción son aptos para tratarlos en la lixiviación carbonato amoniacal. La tostación reductora en las lateritas niquelíferas, es el aspecto más crítico, ya que es necesaria la selectividad del mismo, de forma que todo el níquel presente, pase al estado metálico, sin que simultáneamente, se originen cantidades apreciables de hierro metálico. En las lateritas niquelíferas se indica claramente la factibilidad de esta reducción selectiva, pero desde el punto de vista económico, es necesario lograr velocidades de disminución aceptables que implicarían la rebaja de los óxidos de hierro con una pequeña formación de hierro metálico.

Los yacimientos lateríticos constituyen la materia prima para la obtención de Níquel más Cobalto. En Cuba se concentran reservas importantes, que ubican al país en el 4to lugar a nivel mundial de exportación de estos metales Coello (2009). Las producciones mundiales obligan a incrementar el control del proceso metalúrgico para poder competir en el mercado internacional con productos de alta calidad.

Hoy en día la industria constituye una de las principales fuentes de ingreso de cualquier economía nacional. En las empresas metalúrgicas por ejemplo, el consumo de minerales se hace notable y con este la energía que se necesita para su tratamiento representa un peso importante en los costos de producción. Por estas razones se hace evidentemente necesario buscar alternativas para disminuir en gran medida estos

precios, sobre todo en el área de molienda que históricamente estas operaciones constituyen desde el punto de vista energético una de las más costosas Coello (1999).

El tema relacionado con el mejoramiento de la eficiencia energética industrial, se manifiesta hoy a escala mundial como una fuerte competencia en la búsqueda incesante de nuevas tecnologías, diseños, métodos y procedimientos para aplicar en todas las ramas productivas. Los procesos de extracción y beneficios de minerales por sus altos requerimientos energéticos son ejemplos de campos donde se realizan importantes acciones encaminadas a lograr indicadores energéticos cada vez más favorables.

En el ámbito nacional, la industria niquelífera, prominente consumidor, no está ajena a esa necesidad de mejorar sus indicadores, como paso acertado hacia el camino del éxito empresarial.

En el presente trabajo se estudia el efecto de la velocidad de giro del molino de bola en los indicadores energo-tecnológico.

Problema de la investigación

Necesidad de determinar el comportamiento de los indicadores energo-tecnológicos al variar la velocidad crítica del tambor del molino de bolas para moler el mineral laterítico

Objeto de estudio: Molienda del mineral laterítico

Campo de acción: Aspectos relacionados con el régimen de trabajo del molino y la influencia de la velocidad de giro en los indicadores energo-tecnológicos de la molienda del mineral laterítico.

Objetivo general: Determinar el efecto de la velocidad de giro del molino de bola en los indicadores energo-tecnológicos.

Objetivos específicos

- Caracterizar granulométricamente el mineral laterítico tomado de las correas calientes de la Planta de Secadero de la Empresa Comandante Ernesto Che Guevara.
- Determinar la influencia de la velocidad crítica del molino en los indicadores energo-tecnológicos de la molienda del mineral laterítico.

Hipótesis

La velocidad crítica del tambor del molino afecta los indicadores energéticos del molino y el contenido de las clases granulométricas que definen la calidad del producto final de la molienda del mineral laterítico.

Tareas de trabajo.

- Fundamentación de la investigación.
- Caracterizar el proceso de molienda y sus principales particularidades.
- Selección de los métodos, procedimientos y técnicas para la solución del problema.
- Análisis y discusión de los resultados.
- Redacción de la tesis.

Métodos de investigación empleados

- Método de investigación documental y bibliográfica para la sistematización del conjunto de conocimientos y teorías relacionadas con el objeto de estudio.
- Método de investigación teórico experimental para describir, caracterizar y cuantificar el proceso de molienda a escala de laboratorio.
- Análisis y síntesis, que permite la interpretación de los resultados obtenidos.

CAPÍTULO 1. MARCO TEÓRICO CONCEPTUAL

Introducción

En el presente capítulo se realiza el análisis de los diferentes temas relacionados en el desarrollo de esta investigación, con el objetivo de disponer de los elementos esenciales y de las tendencias actuales que resultan imprescindibles para el desarrollo del trabajo. Se realizará un breve análisis sobre investigaciones precedentes que han tratado sobre el tema en cuestión con el fin de aprovechar sus experiencias y aportes. Incluye elementos relacionados con las características generales de la laterita y la preparación mecánica del proceso de molienda.

1.1 Antecedentes de la investigación.

López y Ortiz (1988) realizan una investigación de los parámetros característicos del proceso de molienda. El estudio se realiza a partir de experimentos en un molino estándar y la aplicación de la tercera "ley" de Bond, lo que permite obtener los parámetros energéticos del proceso que, posteriormente se utiliza en el dimensionado de los molinos industriales, a pesar del profundo estudio que se realiza en el mismo no se tiene en cuenta la influencia que tienen las diferentes clases de tamaño del mineral en la productividad de la molienda.

Se reconoce que hasta un 99 % de la energía consumida en la molienda de un mineral se gasta en el movimiento del molino, en ruido y en calor; sólo el 1 % queda para la reducción del material. Rowland (1988). En el caso particular del proceso de molienda del mineral laterítico cubano, se han realizado importantes investigaciones en este sentido.

Coello y Falcón (1991) y Coello (1993a) demuestran la necesidad de profundizar en el estudio de la molienda de los minerales lateríticos dada la multitud de fenómenos físicos y físicos químicos que tienen lugar durante la molienda de los minerales lateríticos por vía seca, entre los cuales se pueden citar la agregación y desintegración de conglomerados, la variación de la dureza del mineral en un amplio diapasón, así como su densidad. En la investigación se exponen los resultados de la influencia de la carga de bola y la composición granulométrica del producto inicial sobre los principales

indicadores del proceso en cuestión. Coello (1993a) señala que una de las vías para el perfeccionamiento de la molienda de los minerales lateríticos lo constituye la optimización de la carga de bolas en el intervalo 40-50 % mediante el aprovechamiento de las características particulares del mineral laterítico con el subsiguiente ahorro de energía.

Coello (1993b) demuestra a escala de laboratorio, semi-industrial e industrial que el factor determinante en los consumos energéticos en la molienda de mineral laterítico es la carga de bola, seguido del régimen aerodinámico y el ángulo de inclinación de las puertas del separador de aire. Este trabajo propone una tecnología de operación que permite optimizar estos últimos parámetros. En este mismo trabajo Coello demuestra la influencia de la relación serpentina/limonita en los indicadores de la molienda del mineral laterítico.

Falcón y Coello (1997) muestran los resultados obtenidos empleando diferentes procesos de separación de las fases minerales presentes en las menas lateríticas. Las investigaciones se llevaron a cabo a escala de laboratorio y de banco. Se estudiaron esquemas combinados de preparación mecánica y beneficio de minerales utilizando las operaciones de trituración, molienda, clasificación hidráulica, lavado, cribado, separación magnética y gravitacional.

Más tarde Laborde y Coello (2000) analizan la influencia del grado de llenado con bolas del molino sobre la productividad y la estrecha relación de esta última con la eficiencia energética del proceso. Se demuestra la existencia de reservas energéticas en el proceso. Se detectan las principales causas del fenómeno que son: irregularidad de alimentación al molino creando ausencias ocasionales dentro del sistema o baja productividad, pero a pesar de la profundidad con que son tratados los temas de dicha obra tampoco se tiene en cuenta la influencia del beneficio de la mena.

Coello y Tijonov (2001) realizan un análisis crítico-valorativo sobre los modelos más convencionales que describen la relación matemática entre la energía consumida en la molienda y la reducción dimensional, sus principales limitaciones para la evaluación de la energía en la molienda de poliminerales. A partir de esto se proponen importantes

adecuaciones al modelo de Tijonov, que derivan en uno nuevo para la valoración de la energía en la molienda de minerales multicomponentes. El modelo propuesto no sólo permite la determinación del consumo de energía de cada componente de la mezcla mineral en su molienda conjunta, sino también los flujos energéticos de cada clase de tamaño de cada componente de la mezcla. El modelo propuesto puede ser empleado para determinar el consumo de energía en la molienda del mineral, pues el mineral laterítico está considerado como policomponente.

Garcés y Rondón (2002) determinaron por vía experimental los parámetros de las funciones de la razón de la fragmentación y de distribución de la fragmentación de la molienda dosificada de la laterita en un molino de bolas a escala de laboratorio, pero a pesar de la profundidad con que son tratados los temas en dicha obra no se realiza un análisis de la influencia que tiene el beneficio del material en la productividad del molino.

Fuentes y Suárez (2004) hicieron un estudio en la planta de Preparación de Minerales (sección molienda) para determinar cómo influyen el régimen dinámico y la operación del clasificador sobre los indicadores tecnológicos del proceso, en este trabajo no se aborda el efecto que tiene las diferentes clases en el proceso de molienda.

Laborde (2004) realizó una investigación en la unidad de molienda, específicamente en sus dos equipos principales el molino de bolas y el ventilador de recirculación. Los resultados muestran que la variabilidad observada en el consumo energético se debe, fundamentalmente, a la ausencia de estabilidad en el flujo de alimentación de los molinos. Se obtiene un modelo estadístico que permite predecir el comportamiento del consumo específico de energía en función de la productividad diaria de la sección de molienda.

En Menéndez et al. (2006) se presenta un análisis de los posibles beneficios de la aplicación de los conceptos de sostenibilidad de la energía en los procesos de conminución. El estudio se llevó a cabo en la Planta de Punta Gorda, Moa, Holguín. El trabajo se basa en la teoría clásica de conminución y en los postulados teóricos de la

molienda de componentes múltiples. Se aplica el método factorial desde la perspectiva del Sistema de Gestión de la Energía.

Coello y Menéndez (2008) muestran la influencia de las mezclas lateríticas de limonitas y serpentinitas de la velocidad de la molienda de cada uno de estas fracciones molidas por separado y en su conjunto, confirma las afirmaciones de Coello en (1993) sobre la conservación de las regularidades individuales de las fracciones constituyentes de la mena laterítica en la molienda de sus mezclas utilizando con indicadores de la molienda las funciones de distribución de la fragmentación y de selección.

Aldana y Legrá (1996) citado de (Urgelles, 2012) analizaron que la productividad de los molinos se mide por el número de toneladas de mineral inicial desmenuzado, por la cantidad de toneladas formadas nuevamente y por la cantidad de toneladas de la clase calculada por unidad de tiempo y depende de una serie de factores, entre los más significativos se encuentran:

- Humedad de mineral de alimentación.
- Fineza del mineral de alimentación.
- Grado de llenado del molino con la carga de bolas.
- Insuficiente capacidad de los equipos que alimentan y extraen el material procesado y que suministran los insumos energéticos, electricidad fundamentalmente.
- Limitación de la carga (amperaje) de los equipos básicos, en este caso el molino.

El control de la humedad en la alimentación y en el circuito es de vital importancia en la molienda por vía seca, particularmente en circuitos con cribado. Algunos tipos de molinos toleran mayor contenido de humedad que otros, esta afecta la capacidad y el consumo de potencia, se demostró experimentalmente que un molino con clasificador perdió 25 % de su capacidad y sufrió un incremento del 50 % en el consumo de energía por toneladas al recibir el producto con un incremento de humedad de 0,8 a 4 %.

El consumo de energía está ligado al grado de llenado del molino con los elementos triturantes. Al incrementarse este, se incrementa también el consumo de energía al máximo cuando el molino está lleno hasta el 50 % de su volumen. Estas conclusiones

se confirman con datos experimentales; de igual manera, la influencia del grosor, forma, densidad y resistencia de las bolas. El trabajo puede ser utilizado como referencia para determinar el consumo de energía requerida para el desmenuzamiento del mineral laterítico.

Rojas-Enrique (2018) Realiza la selección y montaje de un accionamiento con variador de velocidad para la molienda de mineral laterítico, con el objetivo de evaluar la influencia de la variación de la velocidad de giro del molino en los indicadores energéticos.

1.2 Características del mineral laterítico.

La laterita es el suelo propio de las regiones cálidas, caracterizado por la pobreza en sílice y su elevado contenido en hierro, alúmina y/u otros minerales. Las costras lateríticas se deben a la meteorización de la capa superficial del suelo, es decir, a la acción in situ de los agentes meteorológicos (lluvia, insolación, viento, acción de los seres vivos, etc.). La constitución del mineral laterítico se compone de una mezcla de limonita (de carácter terroso) y de serpentinas parcialmente descompuestas y duras.

Limonita: La limonita es una mezcla de minerales de la clase IV (óxidos), según la clasificación de Strunz, su fórmula general es: FeO(OH)*nH₂O. La limonita es normalmente el mineral goethita, pero puede consistir también en proporciones variables de magnetita, hematites, lepidocrocita, hisingerita, pitticita, jarosita

Serpentina: se define como un mineral con una fórmula química definida Mg₃Si₂O₅ (OH)₄ formador de rocas en dos variedades fundamentales Antigorita y Crisotilo. Ambos minerales tanto la limonita como la serpentina son considerados minerales secundarios puesto que se formaron de minerales previamente existentes, mediante procesos en los que participa la atmósfera, la hidrosfera y la biosfera.

En las regiones ecuatoriales y húmedas, el agua tibia y algo ácida altera los feldespatos y libera la alúmina y los óxidos de hierro, que permanecen en la capa superficial, en tanto que la sílice y los óxidos alcalinos son arrastrados por las aguas infiltradas. Se forma así una tierra roja, suelta y fértil: la ferralita. En otras regiones tropicales, la existencia de estaciones secas provoca otro fenómeno: la laterización o

transformación de esas tierras aluminoferruginosas en una costra ferralítica o caparazón, dura y espesa, que constituye la laterita.

1.2.1 Formación de la laterita

Las lateritas se forman a partir de la lixiviación de rocas madres que pueden ser sedimentarias, metamórficas; ígneas o proto-menas. Dicha lixiviación va dejando en el residuo los iones más insolubles, predominando: hierro y aluminio. El mecanismo de lixiviación tiene una secuencia de pasos muy importantes. Primeramente los ácidos disuelven la estructura cristalina de un mineral determinado del material padre, esto es seguido por la hidrólisis y precipitación de óxidos insolubles y sulfatos de hierro, aluminio y sílice.

Todo esto bajo altas temperaturas en un clima monzónico subtropical húmedo. Una característica esencial para la formación de laterita es la repetición de las estaciones húmedas y secas. Las rocas son lixiviadas por el agua de lluvia que se filtra durante la temporada de lluvias, la solución resultante que contiene los iones lixiviados es llevada a la superficie por la acción capilar durante la estación seca. Estos iones forman sales que se secan en la superficie. Dichas sales son lavadas durante la próxima temporada de lluvias. La formación de laterita se ve favorecida en zonas de relieve atenuado como suaves crestas y mesetas que evitan la erosión de material superficial. Durante la formación de lateritas existe una zona de reacción donde las rocas están en contacto con agua que abarca el nivel más bajo al más alto en el que fluctúa el nivel freático. Esta zona de reacción se agota progresivamente de los iones fácilmente lixiviados de sodio, potasio, calcio y magnesio. Una solución con estos iones puede tener el pH adecuado para disolver preferentemente óxido de silicio en lugar de los óxidos de aluminio y óxidos de hierro.

Tabla 1.Composición química de los elementos y compuestos de interés presentes en el mineral laterítico.

Elementos	Ni	Со	Fe	MgO	SiO ₂
Contenido, %	1,17	0,10	42,45	2,47	7,88

1.3 Aspectos generales del proceso de molienda de minerales

La molienda es una operación unitaria que reduce el volumen de las partículas de una muestra sólida. La reducción de la partícula se lleva a cabo dividiendo o fraccionando la muestra por medios mecánicos hasta el tamaño deseado. En el proceso de molienda la partícula llega a romperse ya que la acción del cuerpo moledor supera la fuerza de cohesión interna de la partícula. Para reducir el tamaño de las partículas con un elevado control se utilizan los molinos de bolas, manejándose tamaños intermedios y finos. El molino de bolas lleva a cabo la mayor parte de la reducción de las partículas con la combinación de dos mecanismos fundamentales: la abrasión y el golpe o impacto Álvarez et al. (2009), aunque durante el proceso de desmenuzamiento también está presente en una menor medida la fractura por compresión (clivaje).

Los mecanismos de conminución, ya sea la compresión, la abrasión o el impacto del tamaño de las partículas minerales son prácticamente los mismos independientemente del tipo de cuerpos moledores empleados, aunque el predominio de uno u otro, es el resultado del tipo de medio, el tipo de revestimiento empleado y la velocidad de rotación del molino. Wills y Nappier- Munn (2006).

Un elemento que resulta ser de vital importancia en la operación del molino es la velocidad de giro del tambor. A partir de esta concepción se puede decir que la fuerza principal de molino se trasmite a los cuerpos moledores a través de revestimiento. Cuando se opera con una velocidad relativamente pequeña, o un revestimiento liso, hace que la carga de bolas se deslice lentamente a una baja altura, para luego resbalar en descendencia sobre las paredes del tambor, al mismo tiempo, las capas de bolas resbalan unas sobre otras, favoreciendo que prevalezca el mecanismo de abrasión o fricción, este régimen de trabajo se le conoce como régimen de cascada (figura 1), que produce un material más fino, y en consecuencia, aparece una mayor cantidad de lamas en el producto molido y un mayor desgaste en el revestimiento del molino. Wills y Nappier- Munn (2006). El ulterior aumento de la velocidad de rotación del tambor trae consigo que las cargas de bolas bajo la acción de las fuerzas centrífugas se eleven hasta una altura mayor y al alcanzar el punto de equilibrio dinámico, caen describiendo

trayectorias parabólicas (régimen de catarata), en este caso, el mecanismo que prevalece es el de impacto.

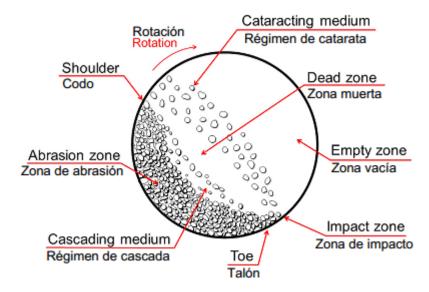


Fig 1. Movimiento de la carga y régimen de trabajo de los molinos de volteo. Fuente: Wills y Finch (2016)

Sin embargo, cuando la velocidad de rotación del tambor del molino alcanza la velocidad crítica, se produce la centrifugación y el medio moledor se lleva a una posición esencialmente fija contra el tambor. La velocidad crítica del molino se produce cuando la fuerza centrífuga supera a la fuerza de gravedad, es decir, las bolas abandonan su trayectoria circular. Esto trae consigo un aumento de la energía demandada por el molino, sin que se produzca un aumento significativo en la reducción de tamaño de las partículas sólidas. Wills y Finch (2016).

Pourghahramani (2012) expresa que en los molinos donde prevalece el mecanismo de impacto, se produce una fractura masiva, que conllevan a la aparición de partículas irregulares y alargadas que luego son redondeadas por el mecanismo de fricción. Por su parte, Austin, *et al.*(1987) plantea que, el rendimiento está notablemente influenciado por las condiciones de operación (revestimiento del molino, la rejilla) y las características propias del mineral.

Los cambios en la composición mineralógica y en las propiedades físicas de la alimentación pueden influir en la variación de las condiciones óptimas de operación

Alatola (2011), como también en los cambios de los productos que recirculan al molino (carga circulante).

1.4 Energía y reducción de tamaño. Medida de la reducción de tamaño

Cualquier consumo energético que produzca una reducción de tamaño debe estar relacionado necesariamente con las condiciones iniciales y finales de tamaño de partícula.

En el caso de rotura de partículas individuales, dichas condiciones de tamaño puede ser, en el caso de partículas esféricas, el diámetro; y en el caso de partículas irregulares, un tamaño entre dos luces de malla de tamices suficientemente cercanos.

En el caso de roturas de colectivos de partículas (rotura de lechos de partículas), será preciso conocer en general la distribución de tamaños antes y después de la rotura. En el caso de que la distribución granulométrica no varíe mucho en la alimentación y el producto, (como es el caso de los molinos de bolas, en los que se puede suponer un desplazamiento casi paralelo), suele usarse un parámetro característico el cual en todo caso quede abierto a objeciones ya que es necesaria mucha más energía para la rotura de las partículas finas que las gruesas, y el cambio en los rasgos de tamaños finos no puede ser descrito bien sólo por dicho parámetro.

Para intentar superar las objeciones comentadas anteriormente, se utiliza asiduamente como medida de la reducción de tamaño el cambio en la superficie específica entre alimentación y producto. Eso tampoco está exento de objeciones, ya que el valor de este parámetro depende grandemente del método de medida utilizado, siendo estrictamente solo posibles las comparaciones cuando los valores se hayan obtenido mediante el mismo método de medida. En todo caso, está claro que un mismo valor de la superficie específica puede ser obtenido a partir de diferentes distribuciones de tamaños.

Puede por tanto concluirse que la única medida aceptable de la reducción de tamaño consiste en la comparación de las distribuciones granulométricas de alimentación y producto, que por otro lado no presenta ningún problema a la hora de su tratamiento numérico.

1.5 Energía de rotura

No toda la energía suministrada en el proceso de reducción de tamaño es efectivamente utilizada, por lo que cabe distinguir entre energía específica de conminución (por unidad de masa), E_{ec}, y la energía específica externamente aplicada, E_{ec}, siendo la primera realmente utilizada en la reducción de tamaño.

En el caso de la medida de la energía específica de conminución, al ser dependiente de la estructura de las partículas individuales, debe manejarse un valor medio estadístico obtenido a partir de un número suficientemente grande de partículas. Lo mismo puede decirse acerca de la energía específica aplicada externadamente, aunque esa última permite una misma medida más sencilla que aquella.

Para rotura de partículas individuales, dentro del mismo material, tamaño de partícula y geometría, la energía específica aplicada externamente es siempre superior a la energía de conminución; pero en el caso de rotura de partículas en multicapa, este valor es muchísimo mayor, ya que los niveles de tensión en muchas partículas no alcanzan los valores necesarios para la rotura, disipándose dicha energía como calor.

1.6 Llenado con bolas a los molinos

Empíricamente se ha llegado a la conclusión de que el molino debe ser llenado en un rango de 40 a 50 % de bolas, ya que de esta forma es mayor el trabajo de desmenuzamiento aunque la potencia consumida por el molino también aumenta. Pueden ser utilizados otros por cientos de llenado de bolas al molino según las condiciones de trabajo bajo las cuales se va a trabajar y los parámetros que se quieran evaluar.

Conclusiones Parciales

Existe una vasta experiencia en la molienda de las menas lateríticas y en el estudio de los molinos de bolas, pero ninguno ha tratado el efecto que tiene la variación de la velocidad de giro del molino en los indicadores energéticos.

CAPÍTULO 2. MATERIALES Y MÉTODOS

Introducción

La correcta selección de los materiales y métodos, garantiza su desarrollo de manera eficaz y a la vez asegura la veracidad de los resultados, en cuanto a la toma y preparación de las muestras y los análisis granulométricos. Los objetivos específicos de este capítulo son:

- 1. Exponer las principales técnicas y procedimientos utilizados durante el trabajo experimental.
- 2. Caracterizar los principales equipos y materiales empleados durante el desarrollo del trabajo.

2.1 Toma y preparación de las muestras de mineral laterítico

En la Empresa "Comandante Ernesto Che Guevara" se procesan tres tipos de yacimientos de mineral laterítico: Camarioca Este (CE), Yagrumaje Norte (YN) y Yagrumaje Sur (YS), con los cuales se trabajan en la Planta de Preparación de Minerales. Estos experimentos se realizaron a escala de laboratorio, donde el material fue tomado directamente en las correas calientes a la salida de los secaderos (sin petróleo aditivo) en segmentos alternos de un metro de longitud hasta completar una muestra primaria de 64 Kg (un saco de mineral). La muestra fue seleccionada garantizando dos criterios básicos para estos casos: primero, que la misma sea suficiente para la realización de los experimentos y segundo, que sea representativa tanto cuantitativamente como cualitativamente de todo el mineral.

En la tabla 2 se muestra el porcentaje de los yacimientos que participaron en la conformación de la muestra tomada, definido según la zona elegida para la minería hasta el 2020; así como su composición en los dos tipos fundamentales de menas.

Tabla 2. Participación de Yacimientos en la muestra tecnológica.

Yacimientos	Composición de las Menas (%)		Participación de los Yacimientos (%)
	LB	SB	
CE	29,64	8,22	47,54
YN	16,78	7,99	36,72
YS	28,26	9,11	15,74
Total	74,68	25,32	100,00

LB: Limonita de balance SB: Serpentina de balance

De acuerdo con la tabla 2, la relación de LB/SB de la mezcla de los tres minerales es de 2,95, valor que se encuentra cercano al rango de diseño de la ECG, que es de una relación de LB/SB: 3/1.

Las muestras fueron preparadas y homogenizadas por el método clásico del cono y el anillo. El método de homogenización y cuarteo según Mitrofanov (1982) consiste en mezclar el material para posteriormente apilarlo a la forma de un cono, (figura 2). Este se aplasta en forma de pastel (figura 3) y se divide con una pala o espátula en forma de cruz (cuatro partes iguales) (figura 4). Se retiran dos cuartos opuestos y las otras dos restantes partes forman la nueva muestra, se vuelven a mezclar y el proceso se repite varias veces hasta obtener la homogeneidad de la muestra. Una vez que se tiene la muestra preparada, se procede al pesaje de la misma para obtener el peso con el que se trabajará durante el proceso.

El esquema empleado para la preparación de la muestra aparece en la (figura 5). Para la preparación de la muestra se partió de 64 kg de mineral, como se dijo anteriormente, de ahí se procede a cuartear hasta obtener la masa de alimentación del molino que es de 4,5 kg (ver acápite 2.1.2).

Fig 2. Formación del cono.

Fig 3. Formación del cono.

Fig 4. División con cruceta.

El esquema empleado para la preparación de la muestra aparece en la figura 5.

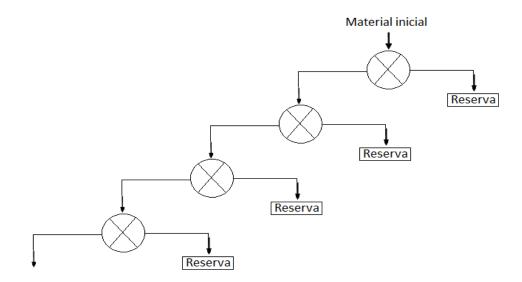


Fig 5. Esquema de cuarteo para la determinación de la alimentación al molino Una vez realizada la homogenización, la muestra se sometió a un proceso de trituración en una trituradora de quijada o mandíbula de 150 x 75 mm (figura 7).

2.2 Metodología para determinar la carga de bolas, y la masa a alimentar al molino

La carga de bola consiste en colocar bolas de distintos tamaños hasta cubrir aproximadamente la mitad del volumen del tambor. Para que el funcionamiento del molino sea efectivo deberán cargarse tanto bolas gruesas, medias y pequeñas para moler todo el material. El trabajo continuo de las bolas en el interior del molino provoca que poco a poco se desgasten (disminuyendo su diámetro y peso), lo que conlleva al descenso del consumo de energía y de la capacidad del molino. Para compensar el desgaste es necesario periódicamente añadir bolas al molino, manteniendo una determinada correlación entre las bolas de diferentes tamaños.

El número de choque de las bolas en el molino crece al disminuir su tamaño, debido a que permaneciendo la misma masa total de bolas su número crece. Por lo tanto, es recomendable la aplicación de un tamaño mínimo cuando estas todavía son capaces de moler bien un material de grosor y resistencia dada. Para determinar el

diámetro de la bola máxima en la carga de bola se utiliza la fórmula de Razumov (1975).

$$D = 28\sqrt[3]{d} \tag{2.1}$$

D: diámetro máximo de las bolas, mm;

d: diámetro de las partículas de mayor tamaño alimentada al molino, mm.

Al considerar un tamaño máximo de las partículas alimentadas al molino de 3,15 mm y sustituir en la expresión (2.1) se obtiene:

$$D = 28\sqrt[3]{3,15}$$

$$D = 41 mm$$

✓ Cálculo del volumen del molino de bola

Conociendo las dimensiones principales del molino de bolas es posible calcular el volumen del molino por la siguiente expresión:

$$V_{molino} = \frac{\pi \cdot D^2 \cdot L}{4} \tag{2.2}$$

$$V_{molino} = cm^2 \cdot cm = cm^3$$

Donde:

V: volumen del molino, cm^3

D: diámetro interior del molino, (49 cm)

L: largo del molino, (28 cm)

Sustituyendo en la ecuación 2.2 se tiene que:

$$V_{molino} = \frac{3,14\cdot49^2\cdot28}{4}$$

✓ Cálculo de la masa total de bolas a añadir al molino

La masa total de bolas a añadir al molino se calculó teniendo en cuenta el criterio de que el equipo alcanza su mayor rendimiento cuando la carga de bolas ocupa el 45 % de su volumen interior, la densidad de bola

$$\rho = (7.5 - 7.8) \cdot 0.6 = 4.5 - 4.68 \frac{t}{m^3}$$

La masa de la carga de bola se determinó mediante la expresión:

$$M_b = \rho \cdot \Theta \cdot V \tag{2.3}$$

$$M_b = (\frac{g}{cm^3} \cdot cm^3)/1000$$

$$M_b = kg$$

Donde:

M_b: masa de la carga de bolas, kg

 θ : es el grado de llenado del molino, (45 %)

 ρ : es la densidad de las bolas, (4.5 g/cm³)

V: es el volumen interior del molino, cm³

Tomando como referencia la carga de bola recomendada por Bond finalmente Giralt et al. (2006).

Tabla 3. Carga de bolas recomendada por Bond.

Tamaño de bola (mm)	No. de bola	Masa (Kg)	Salida Parcial, %
38	25	8,8	43,7
31	39	7,2	35,8
25	60	0,6	3,3
22	68	2	10,0
19	93	1,4	7,1
Total	285	20,1	100

A partir de estos valores es posible determinar la masa de las bolas que se va a emplear en este experimento a partir de la siguiente expresión:

$$M_1 = M_{cb}.\beta$$

M₁; masa de las bolas nuevas, kg

 β : salida parcial, %

Mcb: masa de la carga de bolas, kg;

También se puede determinar la cantidad de bolas para cada tamaño, a partir de la masa de una bola de cierto tamaño, aunque se pueden llegar a cometer errores puntuales si el conjunto de bolas de un mismo tamaño no está fabricado con el mismo material.

Tabla 4. Carga de bolas calculada para los experimentos.

Tamaño de bola (mm)	No. de bola	Masa (Kg)	Salida Parcial, %
40	135	46	43,7
33	243	38	35,8
27	47	3	3,3
25	126	10	10
20	102	7	7,1
Total	653	104	100

Es necesario determinar la cantidad de material a añadir al molino y como se partió de que el volumen ocupado por las bolas es el 45 % del volumen total del molino tenemos:

$$V_{cb} = V_{molino} \cdot 0.45 \tag{2.4}$$

Donde:

V_{cb}: es el volumen espacial de la carga de bolas, cm³.

El volumen que ocupa el material debe estar entre el 60 y el 110 % del volumen de los espacios entre las bolas.

$$V_{mat} = (0.6 - 1.1) \cdot V_{eeb} \tag{2.5}$$

Donde:

 V_{eeb} : volumen de los espacios entre las bolas, cm³.

$$V_{eeb} = V_{cb} - V_{tb} \tag{2.6}$$

Siendo V_{tb} el volumen total de las bolas.

$$V_{tb} = \sum V_b \tag{2.7}$$

Siendo V_b el volumen de cada bola, cm³.

$$V_{tb} = \frac{\pi}{6} \cdot \left[248 \cdot (40)^3 + 447 \cdot (33)^3 + 87 \cdot (27)^3 + 231 \cdot (25)^3 + 188 \cdot (20)^3 \right]$$

Sustituyendo en la ecuación (2.6) se determina el volumen de los espacios entre las bolas.

Mediante la sustitución del valor del volumen de los espacios entre bolas en la expresión (2.5), y considerando que el material ocupa el 85 % de dichos espacios, se obtiene:

$$V_{mat} = (0.85) \cdot 3462,74$$

Para determinar la masa de material a alimentar al molino se utiliza la expresión:

$$M_{ali} = \rho_{mat} \cdot V_{mat}$$

Donde

 ρ_{mat} : es la densidad del material, g/cm³

Mali: es la masa a alimentar al molino, g

$$M_{ali} = 1.5 \cdot 2943$$

2.3 Planificación de los experimentos

Con la realización de los experimentos se comprobará la fiabilidad de la operación del variador de velocidad en la molienda de mineral laterítico en el molino de bola bicameral, para ello se variará la velocidad del molino en 70, 80 y 90 % de la velocidad crítica.

El cálculo de la velocidad crítica se determinó por la siguiente expresión:

Frecuencia critica de rotación del molino.

$$\Psi = \frac{30\sqrt{2}}{\sqrt{D}} = \frac{42,3}{\sqrt{D}} \tag{2.8}$$

Donde:

D: diámetro interior del molino = 0,49 m

 Ψ : es la frecuencia crítica de rotación del molino, rpm.

Sustituyendo los datos en la expresión (2.8) se obtiene que:

$$\Psi$$
 = 60.4 rpm

La ecuación (2.8) parte de la expresión:

$$\Psi = \frac{60\sqrt{g}}{2\pi\sqrt{R_i}} = \frac{30\sqrt{g}}{\pi\sqrt{R_i}} = \frac{30\sqrt{2}}{\sqrt{D}} \tag{2.9}$$

Donde:

 2π : es el ángulo en que gira el tambor cuando da una vuelta completa en radianes; 60 s significa el tiempo en un minuto; R_i: es el radio interior del molino, donde D= $2R_i$ y se considera que $\pi \approx \sqrt{g}$.

A partir del cálculo de la frecuencia crítica de rotación del molino, se muestra en la tabla 5 la planificación de los experimentos.

Tabla 5. Características de los experimentos de molienda.

Parámetros	Experimento 1 (70 % de V _{crítica})	Experimento 2 (80 % de V _{crítica})	Experimento 3 (90 % de V _{crítica})
Velocidad de rotación, rpm	42	48	54
Carga de bolas, %	45	45	45
Masa de alimentación, Kg	9	9	9
Tiempo de Molienda, min	20	20	20

2.4 Metodología para la determinación de la composición granulométrica

2.4.1 Análisis de tamiz

El análisis de tamices consiste en cernir la muestra a través de un juego estándar de tamices, y en determinar el porcentaje de residuos en cada uno de estos, con respecto a la masa de la muestra inicial. En este trabajo se utiliza la serie de Taylor en el que el tamaño de la malla metálica anterior se diferencia del tamaño de la malla metálica posterior en 2 veces. La masa mínima se determina por la siguiente fórmula:

$$Q \min = 0.02 * D \max^2 + 0.5 D \max$$

Donde:

Q mín: es la masa de muestra mínima necesaria para realizar el análisis granulométrico (kg).

D: es el diámetro máximo de la muestra d95 (mm).

$$Q_{min} = 0.02 * (4)^2 + 0.5 * (4) = 2.32 \text{ Kg}$$

2.4.2 Procedimiento del análisis de tamiz por vía húmeda.

Este se realiza cuando la muestra contiene una cantidad considerable de material fino y material arcilloso, siendo necesaria una exactitud o precisión alta de los resultados del análisis granulométrico.

La muestra se deposita en un tamiz con orificios de pequeña dimensión, y las partículas más pequeñas (de lodo) se lavan con un chorro débil de agua. El lavado se realiza hasta que el agua se aclare, el resto de la muestra se criba, se seca y se pesa, de modo que, por las diferencias entre las masas se determina la masa de lodo lavado.

Los resultados obtenidos son tabulados donde debe aparecer la clase de tamaño, la masa de material retenido en cada tamiz, el por ciento en peso y la salida sumaria por retenido y cernido.

Existen muchas formas de registrar los resultados, el más común es representar gráficamente el pasante acumulado en porciento en función del tamaño de partícula,

figura 6. Esto puede hacerse en escala cartesiana—cartesiana, pero tiene la desventaja de que los puntos en la región de los finos tiendan a congestionarse; para evitarlo, se realiza el cambio de escala a logaritmo—cartesiana (Álvarez, 2010).

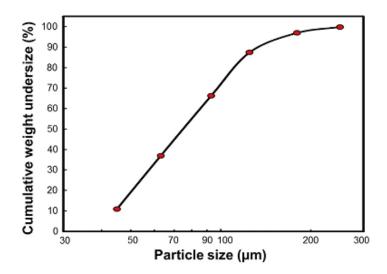


Fig 6. Ejemplo de la representación gráfica de un proceso de tamizado. Fuente: Wills y Finch, (2016)

Si se comparan varias curvas del porciento de pasante acumulado en función de tamaño de partícula, estas tienen forma sinusoidal, lo que origina diagramas congestionados en los extremos de la gráfica. Se conoce más de una docena de métodos de graficar para obtener la ordenada. Los métodos se diferencian en un cambio de escala que hace que se expandan unas zonas y se contraigan otras

Es útil, a menudo, representar las distribuciones de tamaño por medio de una función matemática (modelo), con el fin de representar gráficamente una curva uniforme racional a través de los puntos experimentales o para encapsular la distribución de tamaño en un menor número de parámetros ajustados, los que pueden utilizarse en otros cálculos como modelación y simulación. Napier-Munn, et. (2005).

2.5 Funciones de representación

Las dos funciones de distribución de tamaño usadas comúnmente, para la caracterización de los materiales, son las funciones de Gaudin-Schuhmann y Rosin-

Rammler-Speraling (Napier-Munn, et al., 2005; King, 2012; Gupta y Yan, 2016; Wills y Finch, 2016).

2.5.1 Función de Rosin - Rammler-Spearling

La función de Rosin – Rammler-Spearling es la distribución más utilizada en Europa para representar el porciento del pasante acumulado en función del tamaño de partícula, y se representa mediante:

$$P(x) = 100 \times \left(1 - e^{-\left(\frac{x}{a}\right)^n}\right)$$
 (2.10)

Donde

P(x): pasante acumulado para un tamaño x, %.

x: tamaño de la partícula, unidades.

a: módulo de tamaño de Rosin-Rammler-Spearling para el cual P(x) es igual al 63,2 %.

n: módulo de distribución de Rosin–Rammler-Spearling.

Despejando convenientemente y tomando dos veces logaritmo natural en ambos miembros de la ecuación 2.10 se obtiene:

$$\ln\left(\ln\left(\frac{100}{100 - P(x)}\right)\right) = n\ln x - n\ln a \tag{2.11}$$

Los parámetros n y a se obtienen de la pendiente de la línea recta y de la intersección de esta con el eje horizontal correspondiente a $P(x)=63.2\,\%$, respectivamente, al representar el $\ln\left(\ln\left(100/\left(100-P(x)\right)\right)\right)$ en función del $\ln x$. Ambas constantes completan la descripción de la distribución de tamaños de la muestra

La representación gráfica de la función de Rosin – Rammler-Spearling se expande en las regiones por debajo del 25 % y por encima del 75 %, y se contrae en la región comprendida entre el 30 y el 60 % del pasante acumulado. Sin embargo, se ha demostrado que esta contracción es insuficiente para causar efectos adversos en la

representación de la distribución de tamaño (Napier-Munn, *et al.*, 2005; Álvarez, 2010; Wills y Finch, 2016).

2.6 Equipos e instrumentos utilizados

Durante los ensayos de laboratorio fue necesario emplear un conjunto de instrumentos y equipos sin los cuales el cumplimiento de los objetivos trazados sería imposible. Estos son:

Tabla 6. Juegos de tamices empleados.

	Tamaño		Tamaño
No.	(mm)	No.	(mm)
1	3.15	7	0.50
2	2.38	8	0.25
3	2.00	9	0.15
4	1.60	10	0.09
5	1.0	11	0.075
6	0.71	12	0.044

✓ Trituradora de mandíbula

Las características técnicas de la misma son:

Longitud de la quijada 150 mm.

Boca de alimentación:

- Ancho 55 mm.
- Largo 75 mm.
- Boca de descarga (valor máximo) 3,5 mm.

Fig 7. Trituradora de mandíbula de 150 x 75 mm.

Con el tipo de trituradora utilizada es posible fijar la granulometría deseada, por lo que en este caso se reguló de manera tal que todo el material a utilizar estuviera por debajo de 3,15 mm.

✓ Pie de Rey.

Fig 8. Pie de Rey.

✓ Balanza técnica.

Características:

Rango de peso: 1- 1000 g

Error = 0.1 g

Fig 9. Balanza técnica

✓ Estufa.

Temperatura: (hasta 300) °C

Fig 10. Estufa.

✓ Molino de bola

Características:

- D = 490 mm
- L = 280 mm
- Vcr = 60 rpm

Fig 11. Molino de bola bicameral de la nave de beneficio del ISMMM.

✓ Variador de velocidad altivar 18, modelo U29M2

Características:

Potencia: 2.5 kW

Corriente Nominal: 6.8 A

• Voltaje Nominal: 240.0 V

Frecuencia Máxima: 300 Hz

Figura 12. Variador de velocidad altivar 18, modelo U29M2.

Conclusiones Parciales

- ➤ El diseño de la investigación garantiza adecuadamente el tratamiento del problema, se incorporan los elementos relacionados con la toma y preparación de las muestras, aspectos considerados como uno de los momentos más importantes en la investigación.
- Se realiza una normalización de los datos experimentales mediante la función de distribución Rosin – Rammler-Spearling.

CAPÍTULO 3. ANÁLISIS DE LOS RESULTADOS

Introducción

En el presente capítulo se exponen y analizan los resultados obtenidos durante la investigación, la caracterización granulométrica del mineral laterítico, el cálculo de los indicadores del molino, así como el modelado mediante la función de distribución de tamaño Rosin-Rammler-Spearling.

3.1 Resultado de los cálculos los indicadores del molino

En la tabla 7 se muestran los resultados del cálculo de los indicadores del molino y otros parámetros fundamentales como es la masa de mineral a alimentar al proceso de molienda.

Tabla 7. Resumen de los principales indicadores calculados del molino.

Indicador	Valor calculado
Diámetro máximo de las bolas, mm	41
Volumen del molino de bolas, cm ³	52774
Masa de bolas a añadir al molino, Kg	104
Volumen espacial de la carga de bolas (Vcb), cm ³	23748
Volumen de los espacios entre las bolas (Vee), cm ³	3462,74
Volumen total de las bolas (Vtb), cm ³	20285,26
Volumen del material a alimentar al molino (V _{mat}), cm ³	2943
Masa de alimentación al molino, Kg	4,5

Como se observa en la tabla 7, al proceso se alimentó una masa de 4,5 kg de mineral a cada cámara del molino, lo que equivale a una masa total de 9 Kg para cada experimento y se debe cargar el mismo con 104 Kg de bolas de acero en cada cámara, equivalente a 208 Kg de bolas.

3.2 Influencia de la velocidad crítica en la potencia consumida por el molino.

En la tabla 8 se muestran veinte mediciones tomadas que corresponden al 70 % de la velocidad crítica con 42 rpm, donde se registran los consumos puntuales de potencia.

Tabla 8. Registros puntuales de potencia.

Experimento 1 (a 42 rpm)					
Cantidad de Mediciones	Tiempo (min)	P(W)			
1	1:16:54 p.m.	1350			
2	1:16:56 p.m.	1290			
3	1:16:57 p.m.	1290			
4	1:16:59 p.m.	1320			
5	1:17:00 p.m.	1290			
6	1:17:01 p.m.	1260			
7	1:17:03 p.m.	1260			
8	1:17:04 p.m.	1320			
9	1:17:06 p.m.	1350			
10	1:17:07 p.m.	1350			
11	1:17:09 p.m.	1350			
12	1:17:10 p.m.	1380			
13	1:17:11 p.m.	1440			
14	1:17:13 p.m.	1440			
15	1:17:14 p.m.	1440			
16	1:17:16 p.m.	1410			
17	1:17:17 p.m.	1410			
18	1:17:19 p.m.	1380			
19	1:17:20 p.m.	1350			
20	1:17:22 p.m.	1290			

En la tabla 8 el valor máximo que se alcanza de consumo de potencia es de 1440 W y su valor mínimo es de 1290 W, siendo la diferencia entre estos valores de 150 W para un tiempo de aproximadamente de un minuto.

Las oscilaciones se muestran a continuación en la figura 13.

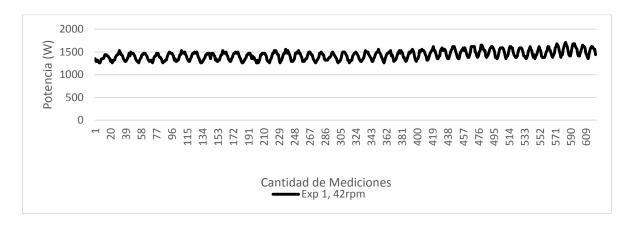


Fig 13. Consumo de potencia en el tiempo para 42 rpm

Las oscilaciones en tan poco tiempo se deben a la trayectoria que recorren las bolas con la carga de mineral en el interior del molino, esto se puede observar de mejor forma en la figura 13, aquí se muestran los resultados de la potencia activa consumida por la carga con un consumo de energía promedio de 1433.28 W. La longitud de la oscilación está en correspondencia con el tiempo que demora la carga del molino en realizar media vuelta en el tambor.

La tabla 9 contiene los resultados del experimento 2, con 48 rpm, que corresponde al 80 % de la velocidad crítica del molino.

Tabla 9. Registros puntuales de potencia para el segundo experimento.

	Experimento 2 (a 48 rpm)					
Cantidad de Mediciones	Tiempo (min)	P(W)				
1	3:03:10 p.m.	1650				
2	3:03:11 p.m.	1620				
3	3:03:12 p.m.	1590				
4	3:03:14 p.m.	1560				
5	3:03:15 p.m.	1470				
6	3:03:17 p.m.	1470				
7	3:03:18 p.m.	1410				
8	3:03:20 p.m.	1380				
9	3:03:21 p.m.	1440				
10	3:03:22 p.m.	1500				
11	3:03:24 p.m.	1500				
12	3:03:25 p.m.	1560				
13	3:03:27 p.m.	1560				
14	3:03:28 p.m.	1620				
15	3:03:30 p.m.	1560				
16	3:03:31 p.m.	1560				
17	3:03:32 p.m.	1590				
18	3:03:34 p.m.	1470				
19	3:03:35 p.m.	1470				
20	3:03:37 p.m.	1410				

Cuando se aumenta la velocidad de rotación del molino, se observa un incremento del consumo de potencia del accionamiento, siendo su mayor valor en las primeras veinte mediciones de 1650 W, alrededor de 190 W más que para el pico del experimento anterior. Las características de las oscilaciones se muestran en la figura 14 a continuación.

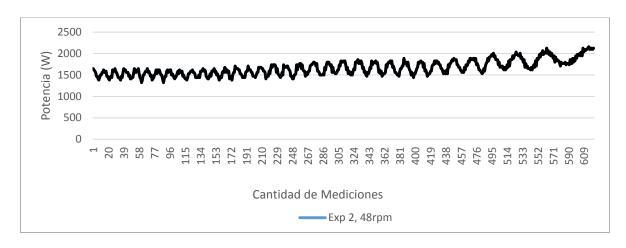


Fig 14. Consumo de potencia en el tiempo para 48 rpm

El experimento dos se desarrolló de forma satisfactoria. En la figura se muestran los resultados de la potencia activa consumida por la carga con un consumo de energía promedio de 1663.43 W. Se puedo observar como la amplitud de la oscilación disminuyó con respecto al experimento anterior, ya que al aumentar la velocidad de rotación del molino la carga del mismo retorno en un menor tiempo al estado inicial.

La tabla 10 muestra los registros de potencia del experimento 3, con 54 rpm, que corresponde al 90 % de la velocidad crítica del molino.

Es interesante destacar que los consumos de potencia no superaron los del experimento anterior, siendo el pico para este experimento de 1560 W. Esto se debe a que se está aproximando a la velocidad crítica del molino, lo que equivale a decir que las bolas se adhieren al tambor donde ocurre la centrifugación y se comienza a observar la disminución del consumo de la potencia.

En la figura 15 se muestran los resultados de la potencia activa consumida por la carga con un consumo de energía promedio de 1570 W. La amplitud de las oscilaciones disminuye con respecto a los experimentos anteriores, como se ha argumentado por el incremento de la velocidad y la rápida incorporación del mineral con las bolas a su estado inicial.

Tabla 10. Registros puntuales de potencia para el tercer experimento.

	Experimento 3 (a 54 rpm)					
Cantidad de Mediciones	Tiempo (min)	P (W)				
1	5:27:03 p.m.	1290				
2	5:27:04 p.m.	1530				
3	5:27:06 p.m.	1440				
4	5:27:07 p.m.	1230				
5	5:27:09 p.m.	1290				
6	5:27:10 p.m.	1560				
7	5:27:11 p.m.	1440				
8	5:27:13 p.m.	1260				
9	5:27:14 p.m.	1410				
10	5:27:16 p.m.	1470				
11	5:27:17 p.m.	1350				
12	5:27:19 p.m.	1170				
13	5:27:20 p.m.	1290				
14	5:27:21 p.m.	1530				
15	5:27:23 p.m.	1440				
16	5:27:24 p.m.	1230				
17	5:27:26 p.m.	1290				
18	5:27:27 p.m.	1560				
19	5:27:29 p.m.	1440				
20	5:27:30 p.m.	1260				

Las oscilaciones de la potencia se muestran en la figura 15.

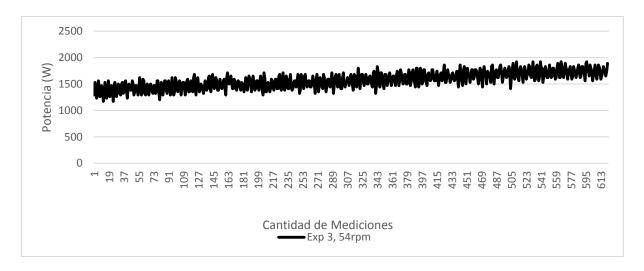


Fig 15. Consumo de potencia en el tiempo para una velocidad crítica 90 %

En las tres gráficas se muestra como la tendencia de la pendiente es positiva, es decir para cada nivel de velocidad crítica, la potencia tiende a incrementarse, esto se debe al aumento de contenido de finos en el interior del molino y el acolchonamiento de las bolas con este material. Se realizó un experimento en vacío, que corrobora que el equipo sin bolas las oscilaciones son mínimas, de ±30 W, como se observa en la figura 16.

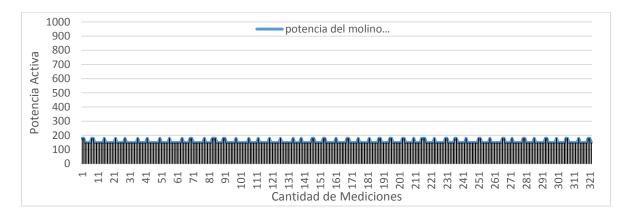


Fig 16. Consumo de potencia en el tiempo para el molino en vacío.

Tabla 11. Valores promedio de la potencia consumida por el molino

No	Velocidad crítica, %	Potencia del molino, W
1	70	1440
2	80	1650
3	90	1560

En la figura 17 se muestra la influencia de la variación de la velocidad de giro del molino en la potencia consumida por el motor del molino.

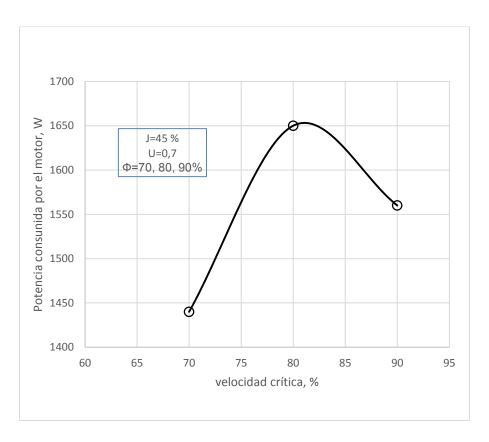


Fig 17. Potencia consumida en función de la velocidad crítica.

Se puede observar que a medida que se incrementa la velocidad de rotación del tambor del molino, la potencia aumenta hasta el valor intermedio de la velocidad crítica, para luego disminuir. Resultados similares son reportados por Martins (2016) a escala industrial.

3.3 Influencia de la velocidad crítica en la energía específica consumida por el molino.

En la figura 18 aparece la influencia de la variación de la velocidad crítica del molino en la energía consumida por el motor del molino.

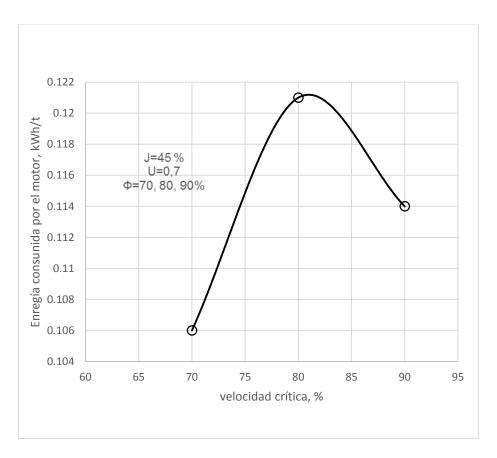


Fig 18. Energía consumida en función de la velocidad crítica.

La tendencia de la energía consumida por el molino es similar a la conducta seguida por la potencia consumida. Con el incremento de la velocidad del tambor del molino, la energía específica aumenta con un punto de inflexión en 80 % de la velocidad crítica. Reportes similares fueron hechos por Martins et al. (2019) y Martins (2016).

3.4 Influencia de la velocidad crítica en la distribución granulométrica.

En la figura 19 se presenta la composición granulométrica del producto alimentado al molino ajustado al modelo Rosin–Rammler-Spearling (RRS). A juzgar por las forma de la curva, en la distribución granulométrica del producto inicial prevalecen los granos gruesos (Andreev et al, 1980). Su tendencia coincide con la tendencia de las curvas granulométrica de los productos molidos a diferentes velocidades críticas (Anexo 1).

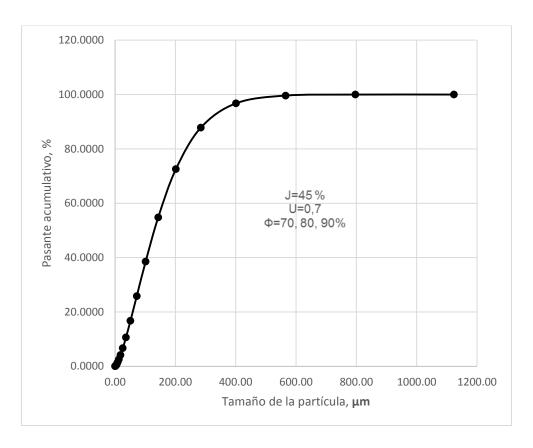


Fig 19. Distribución de tamaño de la muestra alimentada al molino ajustada al modelo RRS

En la tabla 12 aparecen los valores de los parámetros del modelo RRS para la muestra inicial y los productos molidos a diferentes niveles de velocidad crítica.

Tabla 12. Parámetros del modelo Rosin-Rammler-Spearling

	Productos/Velocidad		
No	crítica	Parámet	ros del modelo
		n	а
1	Alimentado	-1.42	232.32
	Producto molido/ 70		
2	%	-1.98	36.79
	Producto molido/ 80		
3	%	-1.57	25.82
	Producto molido/ 90		
4	%	-1.55	29.28

Los resultados revelan que a medida que aumenta le velocidad crítica del molino, el tamaño Rosin-Rammler disminuye hasta unos 25 µm para luego aumentar nuevamente.

En las figuras 20-22 se presenta la influencia de velocidad crítica en los indicadores de calidad del proceso: contenido de la clase -149, -74 y -44 µm

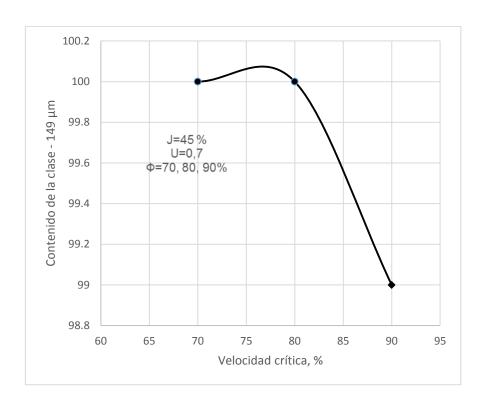


Fig 20. Influencia de la velocidad crítica en el contenido de la clase de tamaño -149 µm.

De acuerdo con la figura 20, la clase -149 µm depende de la velocidad crítica del molino, en la medida que aumenta este último, disminuye el contenido de la mencionada clase. Un cuadro se muestra diferente para las clases -74 µm y 44 µm (figuras 21 y 22 respectivamente). Ambas clases de tamaño siguen identicas tendencias. La velociad de giro del molino ejerce una influencia positiva (aumenta) hasta alcanzar un pico en la velocidad de giro de 80 %, para luego disminuir.

Fig 21. Influencia de la velocidad crítica en el contenido de la clase de tamaño -74 µm.

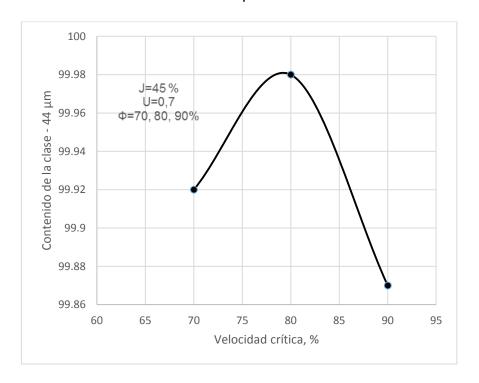


Fig 22. Influencia de la velocidad crítica en el contenido de la clase de tamaño -44 µm.

Conclusiones Parciales

- Al aumentar el contenido de finos en el interior del molino, el consumo de energía es mayor.
- ➤ Al realizar el ajuste por la función Rosin-Rammler se muestra una mejor distribución entre las fracciones del material molido.
- Se determinaron los parámetros de trabajo del molino como son: diámetro máximo de las bolas, volumen del molino, masa de alimentación al molino, entre otros.
- ➤ La velocidad de giro del molino afecta los indicadores energo-tecnológicos del molino.

CONCLUSIONES FINALES

Los resultados del trabajo permitieron arribar a las siguientes conclusiones:

- ➤ La muestra inicial tomada en la correa caliente que alimenta al molino se caracteriza por presencia mayoritariamente de las fracciones gruesas, cuya curva granulométrica sigue las regularidades anteriormente establecidas por Coello -Velázquez (1999).
- ➤ La velocidad crítica del molino afecta de manera importante a los indicadores energéticos y de calidad del producto molido. Tanto la potencia como la energía específica consumidas por el motor del molino dependen de este parámetro. Ambos parámetros aumentan con el incremento de la velocidad crítica hasta alcanzar un valor máximo y luego disminuye con el sucesivo incremento de esta última.
- Los valores del contenido de las clases que caracterizan la calidad del producto molido varían en función de la velocidad crítica. La clase -149 μm disminuye al aumentar la velocidad crítica. Las restantes dos clases siguen la misma regularidad al aumentar este último parámetro, ambas aumentan hasta un máximo (80 % de la velocidad crítica) para luego disminuir.

RECOMENDACIONES

- > Se recomienda evaluar el ensayo donde ocurrió el menor consumo de potencia con los resultados tecnológicos de la molienda.
- > Evaluar los resultados obtenidos según la función de distribución Swebrec.

BIBLIOGRAFÍA

- 1. Alatola, J. (2011). Charge Dynamics in Tumbling Mills: Simulation and Measurements with an In-Mill Sensor. Sweden: PhD Thesis Lulea University of Technology, 2011.
- 2. Álvarez, Rodríguez Beatriz. (2010). Ánalisis de la influencia de los modelos de distribución de tamaño de partícula en la determinación de consumos energéticos en molienda mediante el método de Bond. Oviedo, España: Tesis de Doctorado. Universidad de Oviedo, 2010.
- 3. Álvarez, Rodríguez Beatriz. (2009). Evaluación de la influencia de los modelos de distribución de tamaño de partícula en el Índice de Bond. Mieres: Universidad de Oviedo, España, 2009.
- 4. Andreiev, S. P. (1980). Trituración, desmenuzamiento y cribado de minerales. En S. P. Andreive. Moscú: Editorial Mir, Moscú.
- Austin, C. &. (1994.). Diseño y simulacion de circuitos de molienda y clasificacion. F.
 A. CYTED. Chile.
- 6. Austin, LG, Menacho, J M y Pearcy, F.(1987). Proceeding of the 20th International Symposium of Application of Computers and Maths in Mineral Industries, Vol.2.
- 7. Coello, A. (1993). Consideraciones sobre la molienda de los minerales lateriticos. Mineria y Geologia, Vol. 1 No1.
- 8. Coello, A. (1993). Mejoramiento de la tecnología de la molienda seca de. Rusia: Instituto de Minas de San Petersburgo,.
- 9. Coello, A. (1999:). Curso de preparación mecánica de menas y minerales. Minería y Geología, XII (12), 26-32.
- 10. Coello, A. L. (2015). Procedimiento para la determinación. Moa: Instituto Superior Minero Metalúrgico.
- 11. Coello, A., & Méndez, J. (2008). Grindability of laterite nickel oresin Cuba. Powder technology, Vol 182. issue 1.

- 12. Coello-Velázquez, A. &. Tijonov, N. (2001): Modelo integro diferencial para la valoración de la energía en la molienda de minerales. Minería y Geología. Vol. II (4), p. 14-20.
- 13. Coello-Velázquez, A. (1993b). Sovershenstvovanie tecnologii izmilchenii. Saint Petersburg: Diss. Uch. step. Kand. Doct. Tejn. Nauk.
- 14. Coello-Velázquez, T. A. (1996). Regularidad en la molienda de los minerales lateríticos. Minería y Geología XIII, 57-60.
- 15. Coello-Velázquez (2009). Aportes al conocimiento de la molienda seca de las menas lateríticas.
- 16. Falcón, & Coello, H. Y. (1997). preparación mecánica de los minerales lateriticos. tecnológica vol .1 no 1.
- 17. Fuentes y Suárez. (2004). Influencia en el régimen de operación en el proceso de molienda de la empresa Comandante Che Guevara. Moa: Instituto Superior Minero Metalúrgico.
- 18. Coello-Velázquez.A.L.and Falcón J. (1991), Considerations of the dry grinding of laterite ore. Technical paper to poster XVII International Mineral Processing Congress.Dresden.GDR.
- 19. Garcés.R, & Rondón.S. (2002). Estudio experimental de las funciones de fragmentación de la razón de fragmentación y distribución de la fragmentación de la laterita en un molino de bolas a escala de laboratorio. Moa: Istituto superior minero metalúrgico.
- 20. Giralt,R.; & Rodríguez,T. 2006: Determinación de los parámetros básicos de la molienda del vidrio volcánico de la zona de El Picao. Trabajo de Diploma.ISMM.Moa.
- 21. Gupta, Ashok y Yan, Denis. 2016. Mineral Processing Desing and Operation. Introduction. Segunda Edición. Amsterdam: Elserveir, 2016.

- 22. King, Peter. 2012. Modeling of Simulation of Mineral Processing. Segunda Edición . Englewood, Colorado: SME, 2012.
- 23. Laborde Bronw, R. (2004). Diagnóstico energético en el proceso de molienda de la laterita. Mineria -Geologia, ISSN02585979, No 3 y 4.
- 24. Laborde, R. (2005). Modelación y Simulación del proceso de molienda. Moa: Instituto Superior Minero Metalúrgico.
- 25. Laborde, R., & Coello, A. (2000). Productivity and energetic efficiency in the milling process of the Lateritic mineral. Revista Minería y Geología. XVII (2).
- 26. Laborde, R., Coello, A., & Mendoza, J. (2000). Particularidades del consumo de energia en el proceso de molienda seca del mineral lateritico. Moa: Instituto Superior Minero Metalúrgico.
- 27. Lópes.F, & Ortiz, N. (1988). determinación de los parametros energéticos en un proceso de molienda de los minerales lateriticos. reviste de metalurgia Vol.24 no 4.
- 28. Lynch, J. (1980). Circuitos de trituración y molienda de minerales. Rocas y Minerales, 192p.
- 29. Martins, Pole. F. Influencia de la composición sustancial de las menas kimberlíticas de Catoca en los indicadores energo-tecnológicos de la molienda autógena. Tesis de Doctorado. Tutores: Alfredo L. Coello Velázquez y Juan María Méndez Aguado. Universidad de Oviedo, 2016.
- 30. Martins, Pole. F, Coello Velázquez A.L, Méndez Aguado J.M, Sierra Carlos. Influencia de la velocidad de giro del molino en los indicadores energo-tecnológicos de molienda autógena de Catoca. Imprees, 2019.
- 31. Méndez, J.A., A.V. Coello et al. 2006: Implementation of energy sustainability conceps during the comminution process of the Punta Gorda nickel ore plant. Powder technology, Elseiver
- 32. Napier-Munn, T. J, y otros. 2005. Circuitos de Trituración de Mineral Su Operación y Optimización. Queensland, Austalia : JKMRC, 2005.

- 33. Pourghahramani, P. 2012: Effects of ore characteristics on product shape properties and breakage mechanisms in industrial SAG mills, Minerals Engineering.32.2012:30-37.
- 34. Rásumov, A. & Perov, A. 1985: Proyectos de fábricas de preparación de minerales. Editorial Mir, Moscú.
- 35. Rojas, Enrique I. 2018. Selección y montaje de variador de velocidad para la molienda de mieral laterítico en la planta de beneficio del ISMMM. Moa : Trabajo de Diploma. ISMMM, 2018.
- 36. Rowland, C. (1988). Using the Bond work index to measured operationg comminution efficieng. LMind and Met,15.4.32-36.
- 37. Urgelles, A. L. (2012). Determinación del índice de Bond de las menas de los yacimientos Yagrumaje Norte y Sur de la Empresa Ernesto Che Guevara. Moa: Instituto Superior Minero Metalúrgico.
- 38. Viada, A. (2015). Determinación de la cinetica de la molienda y las funciones de fragmentación y selección del rechazo del carbonato de calcio. Moa: Instituto Superior Minero Metalúrgico.
- 39. Wills, B. A. (2015). Mineral Processing Technology. Montre'al, Canada.
- 40. Wills, A. & Napier-Munn, T. 2006: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Mineral Processing Technology. Pub. Date, ISNB:0750644508.
- 41. Wills, Bary A. y Finch, James A. 2016. Mineral Processing Techology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery.s.l.:Elseiver, 2016.

ANEXOS

Anexo 1.

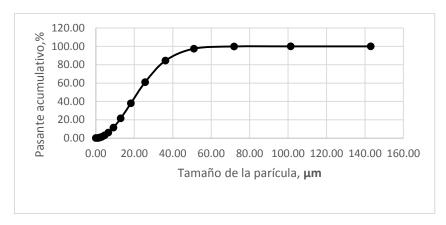


Fig 1.Distribución de tamaño de la muestra 1 al 70 % de la velocidad crítica.

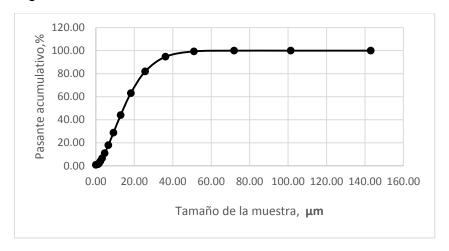


Fig 2.Distribución de tamaño de la muestra 2 al 80 % de la velocidad crítica.

Fig 3.Distribución de tamaño de la muestra 3 al 90 % de la velocidad crítica.

Anexo 2

Tabla 1.Parámetros para loganmilisar la muestra inicial.

Xi	Wp	100/Wp	Ln(100/Wp))	Ln (Ln(100/W	Lnx
3150	100	1	0	0	8.055158
2380	99.27	1.007353682	0.00732678	-4.91621978	7.774856
1600	89.59	1.116196004	0.10992648	-2.20794351	7.377759
1000	76.41	1.308729224	0.26905661	-1.31283348	6.907755
710	66.38	1.506477855	0.40977438	-0.89214856	6.565265
500	58.45	1.710863986	0.5369985	-0.62175998	6.214608
250	43.27	2.311070025	0.83771063	-0.17708255	5.521461
125	32.28	3.097893432	1.13072234	0.12285667	4.828314

Xi	Xi/k	(Xi/k)^b	exp(Xi/k)^b	100*exp(Xi/k	Wp		
3150	13.278	2.542E-02	0.97490	97.490	2.510	Wexp-Wrrs	(Wexp-Wrrs)^2
2380	10.033	3.784E-02	0.96286	96.286	3.714	97.490	9504.3580
1600	6.745	6.651E-02	0.93565	93.565	6.435	95.556	9131.0177
1000	4.215	1.296E-01	0.87841	87.841	12.159	83.155	6914.8284
710	2.993	2.108E-01	0.80991	80.991	19.009	64.251	4128.2388
500	2.108	3.469E-01	0.70688	70.688	29.312	47.371	2243.9846
250	1.054	9.282E-01	0.39525	39.525	60.475	29.138	849.0352
125	0.527	2.484E+00	0.08342	8.342	91.658	-17.205	296.0043
						-59.378	3525.6922
						Suma	36593.1593
						Varianza est	12779650.1526
			VAR	1020.69224	1020.692	Error de est	1351.17
			R	3.50225147			

Tabla 2.Parámetros para loganmilisar la muestra 1.

Xi	Wp	100/Wp	Ln(100/Wp))	Ln (Ln(100/Wp))	Ln(x)
3150	100	1	0	0	8.055158
2380	99.99	1.00010001	0.000100005	-9.2103	7.774856
2000	99.98	1.00020004	0.00020002	-8.5171	7.600902
1600	99.95	1.00050025	0.000500125	-7.6007	7.377759
1000	99.85	1.001502253	0.001501126	-6.5015	6.907755
710	99.09	1.00918357	0.009141658	-4.6949	6.565265
500	98	1.020408163	0.020202707	-3.9019	6.214608
250	96.49	1.036376827	0.03573081	-3.3317	5.521461
150	94.46	1.058649164	0.056993722	-2.8648	5.010635
90	91.57	1.092060719	0.088066479	-2.4297	4.49981
75	87	1.149425287	0.139262067	-1.9714	4.317488
0	85.68	1.16713352	0.15455076	-1.8672	

Xi	Xi/k	(Xi/k)^b	exp(Xi/k)^b	100*exp(Xi/k)^b	Wp	Wexp-Wrrs	(Wexp-Wrrs)^2
3150	84.519	1.5298E-04	0.999847033	99.984703	0.015	99.985	9996.9409
2380	63.859	2.6648E-04	0.999733556	99.973356	0.027	99.963	9992.6725
2000	53.663	3.7605E-04	0.999624020	99.962402	0.038	99.942	9988.4837
1600	42.930	5.8496E-04	0.999415208	99.941521	0.058	99.892	9978.3159
1000	26.831	1.4835E-03	0.998517606	99.851761	0.148	99.702	9940.4411
710	19.050	2.9228E-03	0.997081501	99.708150	0.292	98.798	9761.0745
500	13.416	5.8523E-03	0.994164812	99.416481	0.584	97.416	9489.9708
250	6.708	2.3087E-02	0.977177624	97.717762	2.282	94.208	8875.1025
150	4.025	6.3478E-02	0.938494527	93.849453	6.151	88.309	7798.5594
90	2.415	1.7454E-01	0.839846457	83.984646	16.015	75.555	5708.5045
75	2.012	2.5042E-01	0.778475840	77.847584	22.152	64.848	4205.2092
			Var	58.333	58.333	Suma	95735.2749
			R	0.999985392		Var est	3993129.968
						Error de est	363011.8152

Tabla 3.Parámetros para loganmilisar la muestra 2

Xi	Wp	100/Wp	Ln(100/Wp))	Ln (Ln(100/W	Lnx
3150	100	1	0	0	8.055158
2380	99.97	1.00030009	0.000300045	-8.11157806	7.774856
2000	99.93	1.00070049	0.000700245	-7.26408012	7.600902
1600	99.87	1.001301692	0.001300846	-6.64474066	7.377759
1000	99.68	1.003210273	0.003205131	-5.74300233	6.907755
710	98.59	1.014301653	0.014200349	-4.25448871	6.565265
500	97.27	1.028066207	0.027679569	-3.58706072	6.214608
250	95.14	1.051082615	0.049820695	-2.99932482	5.521461
150	94.34	1.05999576	0.058264908	-2.84275529	5.010635
90	92.93	1.076078769	0.073323664	-2.61287188	4.49981
75	89.99	1.111234582	0.105471633	-2.24931324	4.317488
0	88.77	1.126506703	0.119121431	-2.12761188	

Xi	Xi/k	(Xi/k)^b	exp(Xi/k)^b	100*exp(Xi/k)^b	Wp	Wexp-Wrrs	(Wexp-Wrrs)^2
3150	122.507	5.267E-04	1.00053	100.053	-0.053	100.053	10010.5402
2380	92.561	8.179E-04	0.99918	99.918	0.082	99.888	9977.6608
2000	77.782	1.075E-03	0.99893	99.893	0.107	99.823	9964.5474
1600	62.226	1.526E-03	0.99848	99.848	0.152	99.718	9943.5891
1000	38.891	3.191E-03	0.99681	99.681	0.319	99.361	9872.6881
710	27.613	5.463E-03	0.99455	99.455	0.545	98.045	9612.8519
500	19.446	9.474E-03	0.99057	99.057	0.943	96.327	9278.8967
250	9.723	2.813E-02	0.97226	97.226	2.774	92.366	8531.5132
150	5.834	6.273E-02	0.93920	93.920	6.080	88.260	7789.7801
90	3.500	1.399E-01	0.86946	86.946	13.054	79.876	6380.1265
75	2.917	1.862E-01	0.83007	83.007	16.993	72.997	5328.5356
			Var	35.238	35.238	Suma	96690.7296
			R	0.99998673		Var est	2655538.613
						Error de est	241412.6012

Tabla 4.Parámetros para loganmilisar la muestra 3

Xi	Wp	100/Wp	Ln(100/Wp))	Ln (Ln(100/W	Lnx
3150	100	1	0	0	8.055158
2380	99.95	1.00050025	0.000500125	-7.60065241	7.774856
2000	99.9	1.001001001	0.0010005	-6.90725507	7.600902
1600	99.8	1.002004008	0.002002003	-6.21360726	7.377759
1000	99.55	1.004520342	0.004510155	-5.40142365	6.907755
710	98.5	1.015228426	0.015113638	-4.19215778	6.565265
500	97.25	1.028277635	0.027885203	-3.57965907	6.214608
250	95.32	1.049097776	0.047930534	-3.03800253	5.521461
150	92.74	1.078283373	0.075370307	-2.58534189	5.010635
90	89.82	1.113337787	0.107362518	-2.23154415	4.49981
75	84.74	1.180080245	0.165582441	-1.79828608	4.317488
0	83.29	1.200624325	0.182841692	-1.69913457	

Xi	Xi/k	(Xi/k)^b	exp(Xi/k)^b	100*exp(Xi/k	Wp	Wexp-Wrrs	(Wexp-Wrrs)^2
3150	106.217	7.234E-04	0.99928	99.928	0.072	99.928	9985.5417
2380	80.253	1.117E-03	0.99888	99.888	0.112	99.838	9967.6968
2000	67.439	1.463E-03	0.99854	99.854	0.146	99.754	9950.8259
1600	53.951	2.067E-03	0.99793	99.793	0.207	99.593	9918.8626
1000	33.720	4.283E-03	0.99573	99.573	0.427	99.123	9825.2861
710	23.941	7.283E-03	0.99274	99.274	0.726	97.774	9559.8154
500	16.860	1.254E-02	0.98754	98.754	1.246	96.004	9216.6904
250	8.430	3.673E-02	0.96394	96.394	3.606	91.714	8411.4580
150	5.058	8.107E-02	0.92213	92.2132310	7.787	84.953	7217.0515
90	3.035	1.789E-01	0.83616	83.6156107	16.384	73.436	5392.7889
75	2.529	2.374E-01	0.78869	78.8694061	21.131	63.609	4046.1565
			Var	54.659	54.659	Suma	93492.1736
			R	0.99998729		Var est	4301754.486
						Error de est	391068.5896

Anexo 3

Tabla 5. Valores de la energía específica consumida por el molino.

No	Velocidad crítica,%	Energía consumida, Kwh/t
1	70	0.106
2	80	0.121
3	90	0.114