

MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO SUPERIOR MINERO-METALÚRGICO DR. ANTONIO NUÑEZ JIMENEZ FACULTAD DE METALÚRGIA ELECTROMECÁNICA DEPARTAMENTO DE ELÉCTRICA

TRABAJO DE DIPLOMA

En opción al Título de Ingeniero Eléctrico

Tema: Conversión de Tensión de 4.16/13.2 kV en los circuitos de distribución primario de Mayari.

Autor: Daniel Suárez Galindo.

Tutores: Dr. Igor Pérez Maliuk.

M.Sc. Alfredo Rodríguez Lissabet

Ing. Maria Cristina Ferreiro Mora.

2010
"Año 51 del Triunfo de la Revolución"

Yo: Daniel Suárez Galindo

Declaración de Autoridad

Autor de este Trabajo de Diploma certifico su propiedad intelectual a favor del Instituto
Superior Minero Metalúrgico de Moa "Dr. Antonio Núñez Jiménez", el cual podrá hacer
uso del mismo para fines docentes y educativos.

Daniel Suárez Galindo (Diplomante)	Dr. Igor Pérez Maliuk (Tutor)
Ing. Maria Cristina Ferreiro Mora	M.Sc. Alfredo Rodríguez Lissabet

<u>Pensamiento</u>

... la mejor manera de decir es hacer...

José Martí

<u>Agradecimientos</u>

Agradezco a mis padres Gladis y Ángel sin ellos no habría podido llegar hasta aquí, gracias por saberme guiar y formarme para la vida, a mi esposa Lisandra por apoyarme en los momentos difíciles con su amor, dedicación y comprensión, a mi hermana Maydel, a mi familia que siem pre mostró preocupación y brindo su ayuda cuando lo necesite, a mis abuelos Reyna, Coello y Alcides; a todos mis tíos(as).

Agradecer a todos aquellos que hicieron posible la realización de esta tesis, al compañero Alfredo (Pachuli), a Maria Cristina, al compañero Igor Perez, a los trabajadores de la Empresa Eléctrica de Mayarí.

Muchas gracias al compañero Marco Rodríguez y Marco Medina y otras buenas personas que en Moa conocí.

Gracias al claustro de profesores de la carrera de ingeniería eléctrica por la formación académica recibida.

Gracias a Todos los que hicieron posible de una manera u otra que hoy pueda o ptar por el titulo de Ingeniero Eléctrico.

Dedicatoria

Dedico esta tesis a mis padres Ángel Manuel Suárez Torres y Gladis Galindo Medina como ellos supieron dedicar tiempo y paciencia para mi formación; esta tesis no es más que el reflejo de cada paso que ellos me enseñaron a dar a lo largo de mi vida estudiantil y que se cierra aquí para abrir un nuevo capitulo, la vida de trabajador.

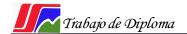
También quiero dedicarla a mi esposa Lisandra Pérez Torres y al resto mi familia, pues con ellos compartiré los éxitos y fracasos que pueda alcanzar en la vida.

Resumen.

Debido a las altas pérdidas técnicas en las redes primarias de distribución de 4.16 kV del OBE Mayarí y a las pérdidas comerciales en estos circuitos se hace necesario un estudio del comportamiento de las variables que actúan en el proceso de distribución de energía, no siendo factibles los resultados obtenidos.

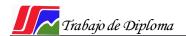
Para escoger los circuitos a los cuales era necesario realizarle la conversión de 4.16/13.2 kV después de conocer las características de cada circuito, tanto técnicas como comerciales y constructivas, se realiza el estudio de las pérdidas técnicas de energía con la ayuda de software RADIAL 7.7 confeccionado para este propósito con el objetivo de establecer una comparación con las variantes propuestas para disminuir las pérdidas técnicas a su nivel de pérdidas reales.

Por tanto se realizará la conversión de voltaje en los circuitos de Felton y El Purio por presentar altas pérdidas técnicas con el objetivo de disminuir las mismas a su estado óptimo de excelencia.



ABSTRACT

According to the high technique losses in the primary distribution reds of 4,16kV from EBO Mayarí and the commercial losses in these circuits, it is necessary an study of the behavior to the variables that act in the process of distribution of the energy, do not been feasible the result obtain.


To select the circuit to which was necessary to realize the conversion of 4,16/13,2kV after known the characteristic of each circuit, as technique as commercial and constructive, to fulfill the study of the techniques losses with the RADIAL software help, made for this purpose with the objective to establish a comparison with the variant proposition to diminish the technique losses to its lowest level.

So it is going to convert the voltage level from 4,16kV to 13,2kV in Felton and Purio circuit, because they present high technique losses with the objective of diminish them to their optimum intensity.

$I\mathcal{N}\mathcal{D}I\mathcal{C}\mathcal{E}$

Introduccion General	10
Capitulo I Marco Teórico	13
1.1 Introducción	13
1.2 Actualidad del tema	13
1.3 Revisión de trabajos precedentes	15
1.4 Fundamentación teórica	17
1.4.1 Partes fundamentales de un sistema eléctrico	.17
1.4.2 Pérdidas de energía eléctrica	18
1.4.3 Clasificación de los consumidores de energía eléctrica	20
1.4.4 Elementos sobre redes de 4,16 kV y 13,8 kV	22
Capítulo II. Caracterización del sistema de distribución de Mayarí	24
2.1 Introducción	.24
2.2 Diseño de la investigación	24
2.3 Caracterización de la UEB Eléctrica	
Mayarí25	
2.3.1 Redes Primarias de 33 kV del municipio Mayarí	26
2.3.2 Infraestructura Técnico Administrativa	28
2.4 Situación actual de las Redes 13.2 kV y 4.16 kV de Mayarí	
2.4.1 Transformadores de distribución	29
2.5 Simulación en el software RADIAL 7.7 de los circuitos de 4.16 kV de Mayarí	29
2.5.1.1 Corrida del flujo trifásico en el Radial a 4.16 kV en el circuito Felton	31
2.5.1.2 Corrida del flujo trifásico en el Radial a 13.2 kV en el circuito Felton	32
2.5.2.1 Corrida del flujo trifásico en el Radial a 4.16 kV en el circuito El Purio	33
2.5.2.2 Corrida del flujo trifásico en el Radial a 13.2 kV en el circuito El Purio	34
2.5.3 Descripción del software utilizado	34
2.6 Análisis del cambio	3 5
2.7 Propuestas de los circuitos de 4.16 kV a convertir en 13.2kV	36
2.7.1 El Purio	37
2.7.2 Circuito de Felton	41
2.8 Conclusiones	.45

Capítulo III. Análisis de los resultados	46
3.1 Introducción	46
3.2 Valoración económica de la conversión de 4.16/13.2	
kV46	
3.2.1 Conversión de 4.16/13.2 kV en Felton	47
3.2.2 Conversión de 4.16/13.2 kV en El Purio	49
3.3 Metodología para el cálculo técnico económico del proyecto	50
3.3.1 Cálculo del VAN y el TIR para los circuitos Felton y El Purio	52
3.3.2 Tiempo de Amortización	52
3.4 Impacto al medio ambiente	53
3.5 Conclusiones del capitulo	54
Conclusiones Generales	55
RECOMENDACIONES	56
BIBLIOGRAFÍA	57,58
ANEXO	59.60

Introducción General

Cuba dedica más 50% del combustible para el suministro de energía eléctrica, estos se traduce a más de 4 millones de toneladas al año. Es crucial para hacer un uso óptimo de esta energía contar un sistema de distribución que proporcione el mínimo de pérdidas técnicas. Hoy en día el 67% de las pérdidas técnicas de energía se producen en los circuitos de distribución primarios de 4,16kV. La provincia de Holguín cuenta con 26 circuitos de 4.16kV, de ellos 10 son del municipio Mayarí. Este municipio, de una extensión territorial de 1604 km², es atendido por la UEB Eléctrica Mayarí, empresa que cuenta con 31688 clientes residenciales y 1242 clientes estatales, con una longitud de líneas en operación de 970 km.

Parte de las tareas principales de la UEB Eléctrica Mayarí están orientadas a:

- 1. Mantener en cero los índices de accidentalidad.
- 2. Alcanzar el 100% de la rehabilitación de las redes y disminución de los índices planificados para el TIU, interrupciones y transformadores dañados.
- Cumplir los indicadores de eficiencia en la recaudación, medición y atención al cliente.
- 4. Perfeccionar el sistema de trabajo para el control y reducción de las pérdidas en distribución y evaluar el impacto de la rehabilitación.
- 5. Impulsar las tareas de la Revolución Energética, haciendo énfasis en el ahorro y uso racional de la energía.
- 6. Hacer cumplir por todos los consumidores lo establecido en las circulares del Consejo de Ministros sobre la contingencia energética

Como vemos una de las principales tareas de la UEB Eléctrica Mayarí es la disminución de las pérdidas en distribución, y evaluar el impacto de la rehabilitación de redes, y uno de los métodos empleados para disminuir las pérdidas técnicas en los circuitos de distribución primaria es el cambio del nivel de voltaje primario. Estos claro, llevan implícito una inversión considerable que en muchos casos no es factible, por tanto es

interés de la empresa realizar el estudio sobre aquellos circuitos de distribución primaria de 4,16kV donde es posible desde el punto de vista económico realizar una conversión de tensión a 13,2kV.

Hipótesis del trabajo

El estudio profundo de las características que rigen los circuitos de 4.16/13.2 kV y con ello conjugado un análisis integral permitirá establecer una conversión para disminuir las pérdidas técnicas de dichos circuitos.

Objetivos del trabajo

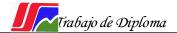
Disminuir las pérdidas técnicas a través del cambio de voltaje a 13,2 kV en los circuitos de 4.16 kV del municipio Mayarí.

Objetivos específicos

- 1. Analizar el programa actual RADIAL de las pérdidas técnicas del OBE.
- 2. Analizar como influye el software RADIAL sobre las pérdidas técnicas de los circuitos.
- 3. Proponer dicha conversión en los circuitos de 4.16 kV factibles.

Campo de acción.

Circuitos de 4.16 kV del municipio Mayarí. Sobre la base del problema a resolver y a partir de la comparación de los circuitos ya convertidos se define como hipótesis científica:


El estudio profundo de las características que rigen los circuitos de 4.16/13.2 kV y con ello conjugado un análisis integral permitirá establecer una conversión para disminuir las pérdidas técnicas de dichos circuitos.

Tareas del trabajo

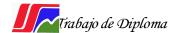
- 1. Establecer el Estado del Arte y sistematización de los conocimientos, teorías relacionadas con el objeto de estudio.
- 2. Recopilar la información sobre la conversión de circuitos de 4.16/13.2 kV.
- 3. Proponer la conversión para disminuir las pérdidas técnicas.

Métodos de la investigaci ón

- 1. Método de investigación documental y bibliográfica para la sistematización del conjunto de conocimientos y teorías relacionas con el objeto de estudio.
- 2. Método de investigación Experimental a escala industrial para describir, caracterizar el objeto de estudio.
- 3. Empleo del software Radial para el cálculo de las pérdidas técnicas en los circuitos de distribución.

Capitulo I Marco Teórico

- 1.1 Introducción
- 1.2 Actualidad del tema
- 1.3 Revisión de trabajos precedentes
- 1.4 Fundamentación teórica

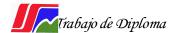

1.1 Introducción

En este capítulo abordaremos el tema del déficit energético como una de las principales razones que nos impulsan a mejorar la tecnología existente para lograr un uso óptimo y eficiente de los recursos.

1.2 Actualidad del tema.

La crisis energética mundial, de la ya son parte hasta los países más industrializado, esta ligada indiscutiblemente a la escasez del petróleo, pues este recursos no renovable es el principal portador energético en la generación eléctrica. La electricidad no es una fuente de energía primaria pero constituye la forma de energía indispensable para poder utilizar las grandes fuentes de energía primaria en beneficio de la sociedad. Existen países productores del llamado "Oro Negro" donde esta crisis no se ha recrudecido tanto, tal es caso de los países del Medio Oriente, Rusia y Venezuela; en este último sin bien es cierto que sus reservas son lo suficientemente grandes para abastecer el país y comercializar, no es el petróleo el recurso más utilizado para la generación eléctrica, pues es 70% es generado con tecnología que emplean recursos renovables, otro país líder a nivel mundial es Holanda, que tiene una potencia de generación de 16.4GW con aerogeneradores. El uso de generación de electricidad por medio de recursos renovables es barato, además del impacto medio ambiental positivo que tiene para nuestro planeta; el problema es el alto costo de instalación que lleva, no estando de esta manera al alcance de la mayoría de los países.

La eficiencia en generación en los Sistemas Eléctricos según estadísticas mundiales está entre un 30 - 60 %. Las Unidades generadoras consumen entre 1 - 7 % de su producción. Para distribuir la electricidad se producen pérdidas entre un 5 - 30 % de la electricidad a la salida de los generadores.

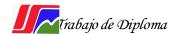


Nuestro país tiene escasas reservas de petróleo, además de no ser de la calidad adecuada para la generación eléctrica, por tanto tenemos que importarlo de otros países con el correspondiente gasto que este conlleva. En cuanto a la adopción de tecnologías que emplean los recursos renovables ya nos hemos referido al alto precio que nuestro país por su situación económica no puede acceder. A modo de solución la vía más razonable que no queda es el uso racional y eficiente de los recursos con que contamos, llevar a la mínima expresión las pérdidas que se producen a lo largo del sistema de suministro de energía eléctrica.

En Cuba eficiencia de generación es alrededor de un 36 %. Como promedio el insumo de generación es el 7,4 %.Las pérdidas en redes son el 17 % como promedio. Datos de la Oficina Nacional de Estadísticas de la República de Cuba revelan que las pérdidas totales en de suministro energía eléctrica son de 2786,6 GW/h al año y representan un 15.7% de la generación bruta de electricidad y son equivalentes a 813 490T combustible. En nuestra provincia Holguín estas pérdidas son de 226.6 GW/h al año, mientras que en Mayarí son de 35.88 GW/h en el período de un año, que representan 10477 T de petróleo.

La conversión de voltaje en los circuitos de distribución no es un tema nuevo, pues a medida que se han incrementado las cargas eléctricas el viejo sistema de 4160 V, ya no satisface los parámetros técnicos para una distribución de energía que garantice un mínimo de pérdidas.

Con la Revolución Energética la conversión de los circuitos de 4.16/13.2 kV ha sido tomada en cuenta como uno de los métodos empleados para la reducción de las pérdidas en los circuitos primarios de distribución de energía. Según estudios realizados por el ingeniero Víctor Puentes Monto de la Unión Nacional Eléctrica, el 67 % de las pérdidas técnicas en los sistemas de distribución primario, se localizan en los circuitos de 4.16 kV debido a la ineficiencia de los mismo. Actualmente en la provincia desde el año 2005 hasta el 2008 se han convertido de 4.16/13.2 kV 7 circuitos de distribución primaria Holguín, de ellos uno, Mayarí 2, en nuestro municipio; apreciándose en este último como principales logros la disminución de las pérdidas en línea de 808 kW antes de la rehabilitación de las redes a 164 kW en la actualidad.

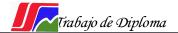

1.3 Revisi ón de trabajos precedentes

En el trabajo "Estudio de Pérdidas Primarias y Secundarias en el circuito Poblado Urbano Noris", del autor: Pablo Acosta. 1998. se hace un estudio pormenorizado de las pérdidas primarias y secundarias en el circuito Poblado Urbano Noris. El mismo incluye redistribución de cargas de los transformadores y el aumento de capacidad a través del recambio de transformadores por aquellos que se encuentran subutilizados. Se utiliza como software para la simulación el Zonal y el Disc5m. Además se incluyen las mejoras propuestas en cada uno de los secundarios y para el circuito primario.

En "Estudio del Circuito 21 de la OBE Moa para la asimilación del incremento de cargas". de: Javier Molina Mayo. 2005. Se realiza un estudio de las condiciones de explotación del circuito 21 de la OBE de Moa, lo cual permite implementar los pasos necesarios para enfrentar el incremento de las nuevas cargas en el sector residencial. Aparecen los pasos necesarios para ejecutar estas tareas. Se caracteriza la situación actual del circuito y se proponen variantes para la situación futura del circuito se emplean aplicaciones informáticas para definir los parámetros generales que caracterizan la distribución.

Se definen las pérdidas eléctricas y la forma de expresarlas en el trabajo "Estudio de pérdidas eléctricas de los circuitos de Moa", del autor: César Laurencio Matos. Moa 2005.. Se agrupan las tensiones, longitudes, materiales empleados y la correspondiente resistencia de los conductores utilizados en las redes de Moa. Se obtiene el gráfico de cargas para el primer trimestre del año 2005, al mismo tiempo quedan establecidos los indicadores que caracterizan los gráficos de carga. Se realiza un breve análisis económico que demuestra la factibilidad de aplicación de las variantes propuestas para la disminución de las pérdidas tanto técnicas como comerciales.

En "Evaluación de impacto de interrupciones y perdidas en el circuito Mayarí 2". de: Ramón Antonio Leyva Elías. 2009. Se realiza estudio minucioso de la red de distribución primaria del circuito de Mayarí 2 de esta ciudad, con el objetivo evaluar el impacto de las mejoras eléctricas, en las condiciones actuales de la red. En ella se analiza las características generales del circuito, tanto técnicas como constructivas, se realizó el estudio de las pérdidas técnicas de energía, auxiliado por el software Radial 7,6 empleado con ese fin, con el objetivo de establecer una comparación antes y después de los cambios



Estudio para la disminución de las pérdidas de energía eléctrica en el municipio Sagua de Tánamo. Autor: Héctor Rafael Miranda Bernal. En este trabajo se realiza un estudio sobre las pérdidas en la red de distribución del municipio Sagua de Tánamo se define el circuito 11 de la Subestación de Sagua 1 como el de mayor potencialidad para la ejecución de inversiones con el objetivo de disminuir las pérdidas técnicas. Son analizadas las cuatro variantes de mejoras técnicas. En los circuitos 11 y 12 como conclusión que todas son económicamente factibles. El trabajo sirvió de base para la confección del proyecto ejecutivo y la ejecución de las mejoras propuestas.

Análisis Comparativo de los Métodos de Asignación de Pérdidas Eléctricas en Redes de Distribución con Generación distribuida. P.M De Oliveira-De Jesús, Miembro, IEEE y M. T. Ponce de Leão, Miembro, IEEE. Este trabajo presenta a un estudio comparativo entre varios métodos de asignación de pérdidas tendiendo en cuenta distintos niveles de penetración de energía distribuida. Los resultados son obtenidos y discutidos a partir de una red de prueba con distintos niveles de penetración de generación distribuida.

Modelación de las pérdidas en redes eléctricas secundarias de distribución. Revista Facultad de Ingeniería, enero-diciembre, vol. 9. Universidad de Tarapacá. Arica. Chile. En este trabajo se propone un modelo matemático para estimar las pérdidas en sistemas eléctricos secundarios de distribución, el cual es concebido gracias a la teoría de programación genética y algoritmos genéticos, considera factores de la red como: la carga transmitida, factor de potencia, longitud total de los conductores, desequilibrio de carga, voltaje en la barra de entrada y grado de enmallamiento de la red. Los resultados obtenidos empleando este modelo resultan bastante satisfactorios al compararlos con los obtenidos de un flujo de carga trifásico.

Estudio para la disminución de las pérdidas eléctricas en el Circuito 1 de la UEB Moa. Autor: Rikiel Cisneros Verdecia y Rhondel Devyn A. Philip 2007. En este trabajo se realizó un estudio detallado de las pérdidas eléctricas del circuito 1, así como su definición y forma de expresarlas. Se proponen varias mejoras para reducir los niveles de pérdidas de energía en la red. Se caracterizó el circuito primario, se realizaron los levantamientos de las cargas para la actualización del monolineal. Además se hizo una valoración económica de las variantes propuestas. No se realizaron corridas en el software profesional PSX.

1.4 Fundamentación teórica.

La energía eléctrica actualmente es vital para el desarrollo de cualquier país, esta energía no puede ser almacenada, por tanto tiene que ser producida y distribuida de acuerdo al nivel de consumo que haya en un momento determinado.

Podemos definir como **sistema eléctrico** al conjunto de plantas generadoras de energía eléctrica que enlazadas por líneas de transmisión y distribución, y subestaciones transformadoras, se ocupa de producir y entregar a los consumidores las cantidades necesarias de energía eléctrica que los mismos requieren.

Una **red eléctrica** está compuesta por todos los elementos que componen la generación, transmisión y distribución de dicha energía.

A medida que se incrementa el desarrollo económico y social de un país, su sistema eléctrico también se expande y desarrolla ya sea para ganar en eficiencia o para seguir aumentando sus horizontes.

1.4.1 Partes fundamentales de un sistema eléctrico.

Estaciones generadoras


Es donde se transforma la energía mecánica (cinética) en eléctrica mediante un sistema de motor primario-generador

Líneas de transmisión y Subtransmisión.

Son los enlaces entre las estaciones generadoras y los sistemas de distribución y grandes consumidores industriales, en Cuba actualmente hay 220 kV y 110 kV en transmisión, y en subtransmisión 33 kV y 13.2 kV.

Líneas de distribución

En Cuba las líneas primarias son de 2.4 kV, 4.16 kV, 6.7 kV y 13.2 kV, en los secundarios de 230, 460, 230/115, 200/115, 120/208. Por su ubicación pueden ser aéreas, soterradas o mixtas.

Subestaciones de transformación

Son las encargadas de elevar el voltaje de generación para transmitirlo a grandes distancias y también bajarlo a diferentes niveles para su distribución i/o consumo.

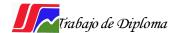
Líneas de distribución

Son las encargadas de conectar las cargas individuales de un área dada con las líneas de transmisión y subtransmisión.

Las líneas de transmisión manejan los bloques de energía, enlazan las estaciones generadoras con los sistemas de subtransmisión y con otros sistemas, en estos están los mayores niveles de voltaje. Las líneas que sirven de unión entre dos sistemas se denominan de enlace.

Este tipo de conexión entre los sistemas eléctricos reportan beneficios como:

- > Reduce los costos de producción al reducir el número de generadores necesarios.
- Mejora el factor de carga del sistema.
- > Aumenta las facilidades en los mantenimientos.

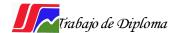

1.4.2 Pérdidas de energía eléctrica

Las pérdidas de energía, obedecen a la ocurrencia de una serie de fenómenos, provocado por los parámetros que caracterizan a las redes y subestaciones, por las características de los materiales y equipos empleados y por las condiciones de operación existentes en el entorno. Dentro de estos fenómenos podemos citar: efecto corona, efecto Joule, las corrientes de Eddy y de circulación, así como la circulación de potencia reactiva por las redes, las reactancias de líneas y suceptancias a tierra; que si bien es cierto son pequeñas, juntas incrementan los niveles de pérdidas.

Clasificaci ón.

Las pérdidas de energía eléctrica se pueden clasificar en:

- √ Pérdidas no Técnicas
- √ Pérdidas Técnicas


Pérdidas no Técnicas: son las pérdidas calculadas como la diferencia entre las pérdidas totales de un sistema eléctrico y las pérdidas técnicas estimadas para el mismo. Considerando el origen de las pérdidas, como criterio de clasificación, tenemos:

- Por robo o hurto: realizado por personas que no tienen ningún trato ni contrato con la empresa concesionaria.
- > Por fraude: realizado por clientes de la empresa concesionaria con la finalidad de reducir su consumo real.
- Por mala administración: corresponde a la energía no cobrada por problemas en la gestión administrativa.

Pérdidas técnicas: por concepto pérdidas técnicas, es inherente al proceso que se sigue para suministrar energía a un usuario final desde el centro de generación o punto de venta de energía. Como bien sabemos, en la naturaleza y en el campo tecnológico, no existe una máquina perfecta, ni un elemento capaz de funcionar u operar con una eficiencia de 100%, lo que indica que las pérdidas técnicas en los sistemas de distribución siempre existirán pero que no debe sobrepasar los rangos aceptables de un óptimo funcionamiento.

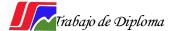
A su vez las pérdidas eléctricas se pueden clasificar por:

- 1. Tipo de pérdidas: Obedecen a la parte y el proceso del sistema donde se producen las pérdidas, así tenemos:
 - Pérdidas por transporte: producidas por la circulación de la corriente en las redes y conductores de las líneas de transmisión, subtransmisión y redes de distribución primaria y secundaria.
 - Pérdidas por transformación: se producen en los transformadores de AT/AT, AT/MT y MT/BT y dependen de su eficiencia y del factor de potencia de la carga que alimentan.
 - Pérdidas en las mediciones: producidas en los equipos y aparatos para realizar las mediciones.
 - 2. Causa de las pérdidas: se agrupan de acuerdo a tres causas:
 - Pérdidas por efecto corona.
 - Pérdidas por efecto joule.

Pérdidas por corrientes parásitas e histéresis.

La magnitud de las pérdidas estará en función de la carga a las que suministren energía, como sabemos, la carga es de una magnitud variable, y como las pérdidas estarán en función de la intensidad de la corriente suministrada, entonces los valores de las pérdidas también variarán, siendo mayores en las horas máximas de demanda. También debemos considerar la naturaleza de la carga, en la mayoría de los casos es de carácter inductivo, lo que provoca un defasaje en el vector corriente con respecto al vector tensión. Eso es debido al consumo de potencia reactiva, requerida por los aparatos que contienen elementos inductivos, necesarios para establecer corrientes de magnetización.

Los parámetros eléctricos: Resistencia, Inductancia y Capacitancia, son los que nos permitirán cuantificar las pérdidas de potencias y energía; puesto que el resistor ofrece una oposición al paso de la corriente y el inductor y el capacitor que producen efectos reactivos y son conocidos como reactancias inductiva y capacitiva respectivamente, y que juntas producen las pérdidas técnicas de energía.


1.4.3 Clasificación de los consumidores de energía eléctrica.

- Residenciales
- Industriales
- Comercial y de Servicios

Se clasifican en tres categorías de acuerdo a la necesidad de suministro eléctrico que tenga cada consumidor.

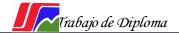
Primera categoría

Aquellos consumidores para los cuales la interrupción del servicio eléctrico origina peligro para la vida de las personas o considerables pérdidas para la economía del país. Poseen dos fuentes de alimentación.

Segunda categoría

Consumidores para los cuales la interrupción del suministro de energía eléctrica limita las producciones.

Tercera categoría


Son todos los consumidores restantes, para ellos se permite una interrupción de tiempo necesario para efectuar las reparaciones o cambios a elementos dañados de la red.

Las redes eléctricas se clasifican según su configuración en:

- > Radiales
- > En lazo
- > Con maya o red

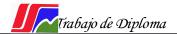
Estas redes de distribución aumentan su costo en confiabilidad del servicio en el mismo orden que aparece enumerado.

- Radial: Red radial es aquella en que la corriente tiene una sola trayectoria desde la subestación de transmisión o subtransmisión hasta los primarios de los transformadores de distribución o hasta la carga dada. El mismo posee ventajas como bajo costo de inversión relativamente y simplicidad. Este a la vez tiene desventajas como falta de continuidad del servicio ante perturbaciones y fallas, debe saberse que más del 80% en líneas son temporales y pueden desaparecer solas.
- > Lazo: Se utiliza donde la zona de densidad de la carga (kW/m²) es media o algo grande.
- Malla: Existen dos versiones, uno con malla en el secundario y el otro con malla en el primario este sistema de distribución es más confiable y de mejores características de regulación de voltaje pero es más costoso se usa exclusivamente en zonas de gran densidad de carga y generalmente es soterrado.

1.4.4 Elementos sobre redes de 4,16 kV y 13,8 kV

Con el cambio de tensión de transmisión la rigidez dieléctrica de los materiales eléctricos y dieléctricos varia y su tensión de ruptura evidentemente no es igual por eso a la hora de diseñar las redes estos materiales y accesorios deben seleccionarse adecuadamente en función del voltaje, en lo adelante se realizará esta selección de los principales elementos de las líneas.

La estructura


Es la encargada de soportar el peso de las líneas, los aisladores y conductores. Estas pueden ser de acero, hormigón, madera o plásticas aunque el material a utilizar depende de muchos factores como la abundancia en el país del mismo, la importancia de la carga, el voltaje y factores ambientales, en Cuba se utilizan las estructuras de madera y hormigón. Existen diferentes tipos de estructuras como las del tipo A, B, C, D, E y las combinaciones de ellas de acuerdo a las características del circuito, por ejemplo para tramos de Líneas curvas se utiliza el tipo B, porque este tipo de estructura permite mantener un adecuado aislamiento y una distancia constante entre las líneas a pesar de la curvatura y para tramos de líneas rectas del sistema se dispone la utilización del tipo A.

El Conductor

El conductor en la distribución puede aparecer en forma de cable y en los alimentadores secundarios en forma de alambres. En este caso se encuentran fundamentalmente conductores de aluminio reforzado con acero y en menor proporción de cobre. Los primeros son conductores de aluminio trenzados en capas simétricas sobre un alma de acero con una tensión mecánica de rotura de 340-380 N/mm. Por su parte los conductores de cobre por su característica son los más estables, es cuatro veces más fuerte a la tensión mecánica que el aluminio pero por su alto costo inicial nos obliga a utilizarlo solamente cuando su uso sea imprescindible, por esta razón el conductor mas utilizado es el aluminio.

Aisladores

Su función principal es aislar los conductores de las estructuras y de tierra, existen dos grupos fundamentales de pedestal o de suspensión

Los aisladores están compuestos por materiales tales como vidrio, porcelana o plásticos resistentes a cambios atmosféricos.

Algunas caracter ísticas de los aisladores de pedestal para 15 kV son:

102mm de ancho

292mm de altura

7,7 Kg. de peso

34,5 de voltaje máximo

241mm de distancia del arco

Los aisladores de suspensión o de discos presentan las siguientes características

Un peso de 3,4Kg.

215mm de distancia del arco.

El mismo tipo de aislador puede servir para diferentes niveles de voltaje solo variando él número de unidades.

Crucetas: son diseñadas para soportar una carga vertical, en este caso el aislador de pedestal, se construyen principalmente de acero galvanizado y/o madera y su longitud dependen del nivel de voltaje donde se valla a utilizar. Para 13,8 kV estas posen una longitud do 8 pies (2,43 m) mientras que para 4,16 kV son de 4 pies (aproximadamente 1,21m)

Capítulo II. Caracterizaci ón del sistema de distribuci ón de Mayarí

- 2.1 Introducción.
- 2.2 Diseño de la investigación.
- 2.3 Caracterización de la UEB Eléctrica Mayarí.
- 2.4 Situación actual de las Redes 13.2 kV y 4.16 kV de Mayarí.
- 2.5 Simulación en el software RADIAL 7.7 de los circuitos de 4.16 kV de Mayarí.
- 2.6 Análisis del cambio
- 2.7 Propuestas de los circuitos de 4.16 kV a convertir en 13.2kV.
- 2.8 Conclusiones.

2.1 Introducción

En el presente capítulo se caracterizan los circuitos de 4.16 kV de Mayarí con la ayuda del software RADIAL 7.7 para determinar las pérdidas técnicas del primario, además se determina en cuales de estos circuitos de 4.16 kV es factible efectuar la conversión de voltaje en el primario de 4.16/13.2 kV.

2.2 Diseño de la investigación

Para facilitar el desarrollo de este trabajo investigativo se diseñaron los siguientes pasos que nos permitirán efectuar un cronograma para ahorrar tiempo y ganar en organización.

- Intercambio con especialistas de la Empresa Eléctrica de Mayarí y Holguín.
- Caracterización de la Empresa Eléctrica de Mayarí.
- Ubicación en un mapa de las líneas eléctricas en cuestión.
- Estudio de los circuitos de 4.16kV de Mayarí.
- Estudio teórico de las redes de tensión a sustituir.
- Valoración técnico económico de las propuestas.

2.3 Caracterización de la UEB Eléctrica Mayarí.

El municipio Mayarí, situado al norte de la provincia Holguín, por el este limita al este con el municipio de Sagua de Tánamo; al sur con la provincia de Santiago de Cuba; por el oeste con el municipio Cueto; y al norte con el municipio de Antilla.

Su extensión territorial es de 1310,6 km² que representa el 14.1 % del área total de la provincia con una población de 105256 habitantes con una densidad de población de 80,3 habitantes/km², la población rural del municipio asciende a 39123 habitantes y la urbana a 66133 habitantes, en el territorio hay 134 asentamientos de ellos 24 pertenecen al plan turquino, de todos los asentamientos hay electrificados por el SEN: 63, por tendederas : 45, por hidroeléctrica: 1, por plantas: 13, tendederas del batey: 3, tendederas de organismos: 9 y sin electrificar 6 asentamientos.

El municipio cuenta con 7 núcleos urbanos principales que son: Guaro, Guatemala, Nicaro-Levisa, Felton, Caridad, Cosme y Mayarí que es la cabecera del municipio.

El total de viviendas del municipio es de 37830 de las cuales hay electrificadas por todas las fuentes 35280, de ellas por la vía del SEN 29845, por hidroeléctrica 124, por planta 431, por tendederas 4880, faltan por electrificar 2550 viviendas pero sólo son electrificables 326.

La infraestructura eléctrica es la siguiente:

44.734 km de LTE a 110 kV

228.4 km de líneas a 33 kV

220.5 km de líneas a 13.2 kV

141.0 km de líneas a 4.16 kV

361.5 km Totales de líneas a 13.2 y 4.16 kV

319.7 km de líneas secundarias

Para un total de 954.4 km de líneas.

En el municipio existen 2 circuitos a 110 kV, 9 circuitos a 33 kV que alimentan 47 subestaciones de ellas 20 son de distribución con un total de 24 circuitos, 11 son a 4.16kV y 13 a 13.2 kV.

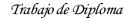
Dentro del municipio están instaladas baterías diesel en dos subestaciones de 110/34.5 kV y en 1 de 33/13,2 kV (Cabonico) y grupos electrógenos de generación de electricidad que cubren gran parte de la energía demandada en el municipio.

2.3.1 Redes Primarias de 33 kV del municipio Mayarí.

El municipio Mayarí es alimentado a través de los interruptores 4035, 6175 y 4040 desde la subestación Nipe 110/34.5 kV y los interruptores 4460, 4465, 4470, 6390, y el 6415 desde la subestación Nicaro 110/34.5 kV con un total de 20 subestaciones de distribución internas al municipio. La línea del interruptor 6415 es expresa para la fábrica de Tubos Plásticos Cajimaya y un ramal para alimentar a Cayo Saetía y cuatro barrios a 19.9 kV. La línea del interruptor 6390 es expresa para la fábrica de Níquel. Todas las líneas a 33 kV presentan enlace con otras líneas.

Las principales cargas del municipio son la fábrica de Níquel Rene Ramos Latour, La Termoeléctrica de Felton y el Transportador de Pinares.

Las dos subestaciones de la cabecera municipal cuentan con doble alimentación desde líneas de 33 kV de diferentes subestaciones a través del desconectivo 6001.


Característica de operación de las líneas de 33 kV que alimentan subestaciones de distribución.

INTERRUPTOR	NOMBRE	Potencia instalada	Long. de la línea	Demanda máxima	Caída Del Voltaje		lidas iicas
		MVA	km	MW	Δ V %	∆P kW	∆P %
4035	Nipe-Mayarí	20.64	55.9	6.9	5.8	197	2.8
4040	Nipe-Deleite	15.25	14.9	5.3	4.5	859	1.6
4460	Nicaro-Pinares	24.14	78.7	6.4	4.9	161	2.5
4465	Nicaro-Fabrica 2 -Levisa	7.6	5.6	5	0.87	27	0.5
4470	Nicaro- Cabonico	18.62	29.1	8.1	6.4	219	2.6
6415	Expreso Cajimaya	18.6	29.8	1.5	2	38	1.6
6175	Nipe-Trasvase		19.9				
6390	Nicaro-Fca 1	25	4.3	16	0.34	13	0.1

Tabla 2.1 Descripción de las líneas de 33 kV de Mayarí

Las pérdidas están en el orden de los cálculos realizados aunque se requieren mediciones para una correcta valoración.

La demanda máxima del municipio Mayarí es aproximadamente de 18.4 MW y las pérdidas totales suman 1.13 MW, lo que representan el 6.14 %, sin contar las líneas de 33 kV.

2.3.2 Infraestructura Técnico Administrativa

El municipio Mayarí presenta una densidad de redes eléctrica alta pero de poca complejidad, en estos momentos la actividad económica fundamental lo constituye la producción de Níquel y la generación de electricidad.

Existen tres ingenieros que atienden el Departamento Ingeniería de Distribución, además de atender otras tareas del Centro de Operaciones. Cuentan con 2 computadoras para el trabajo de ingeniería de distribución compartida con otros compañeros de la parte de operaciones. Los monolineales del sistema de distribución se encuentran actualizados, aunque algunos de estos no lo poseen ya que se encuentran en el despacho del territorio. En las líneas de 33 kV poseen todos los monolineales y se encuentran actualizados...

En la subestación de Cabonico hay instalado un Grupo Electrógeno de 1,9 MVA, en la subestación de Nipe 110 kV existen dos batería de 8 Grupos Electrógenos cada una para un total de 29.6 MVA, en la subestación Nicaro 110 kV existe una batería de 8 Grupos Electrógenos para un total de 14.8 MVA.

2.4 Situación actual de las Redes 13.2 kV y 4.16 kV de Mayarí.

El municipio de Mayarí cuenta con 24 circuitos primarios de distribución, de ellos 11 son de 4.16 kV y 13 de 13.2 kV. Los circuitos de 4.16kV tienen unos 10444 clientes que representan el 32% del total de la UEB, poseen una longitud total de 141 km de 212 km que tienen las líneas de distribución en el municipio.

Los 24 circuitos tienen su demanda máxima inferior a la capacidad instalada en transformadores de distribución lo que indica gran cantidad de transformadores subcargados. De los 24 circuitos de distribución solo 3 circuitos a 4.16 kV tiene la caída de voltaje superior al 10 %. (Ver Tabla 2.5). Todos los circuitos tienen el factor de potencia igual o superior a 0,9, menos el circuito Guerrita que se encuentra en 0.55 y Cabonico en 0.88. En el municipio existen 18 circuitos de distribución primaria que poseen Nulec, ellos son el circuito Mayarí-1, Mayarí-2, Levisa, El Purio, Nicaro, Pasa, Playa Manteca, Herrera, Guaro, Nipe, Platanillo, Guatemala, Arroyo Seco, Ocujal, Felton, Arroyo en Medio, Guerrita y Cabonico. Los circuitos Nicaro, Guerrita, Felton,

Levisa y El Purio están en el límite de posibilidades de operación por exceso de pérdidas por lo que requieren realizar nuevas inversiones.

2.4.1 Transformadores de distribución

Existen 1238 transformadores de distribución instalados

- Existen 35 transformadores de distribución detectados sobrecargados a más del 150 %,
- ❖ De los 35 sobrecargados al 150 %, 25 son de redes de 7620 V y 10 de 4160V.
- Con bajo aislamiento tenemos detectados hasta la fecha 41 transformadores.
- ❖ Tenemos que trabajar para disminuir la principal causa de los dañados hasta la fecha, el 37,5%, que es la de bajo aislamiento, por estar en mal estado el aceite.

2.5 Simulación en el software RADIAL 7.7 de los circuitos de 4.16 kV de Mayarí.

El municipio Mayarí cuenta con 11 circuitos de distribución de 4.16 kV, emplearemos el Software RADIAL 7.7, muy utilizado en la Unión Nacional Eléctrica, para la determinar las pérdidas técnicas en los sistemas de distribución primaria de Mayarí, también analizaremos la caída de voltaje en el peor de los nodos por ser un parámetro técnico esencial a la hora de caracterizar un circuito.

En esta simulación se obtuvieron los siguientes datos:

	Resultado	s de la corr	ida en el Ra	dial 7.7		
	Pérdida	s en el				
	Circ	uito	Voltaje en el peor nodo)
	A 4.16 kV	A 13.2KV	4.16 kV 13.2 kV			kV
Circuitos	kW	kW	V de Fase	∆V >10%	V de Fase	∆V >10%
Ocujal planta Asfalto	2	0	2.5	-	7.95	-
Pilón	2	0	2.4	-	7.94	-
Herrera	14	1	2.26	-	7.9	-
Guerrita	65	5	1.93	22	7.81	-
Felton	140	9	1.65	33.2	7.77	-
la Pasa	6	1	2.42	-	7.94	-
El Purio	226	19	1.7	32	7.75	-
Nicaro	20	2	2.37	-	7.93	-
Levisa	72	7	2.17	-	7.87	-
Melones	2	0	2.31	-	7.95	-
Ocujal Cajimaya	8	1	2.37	-	7.94	-

Tabla 2.2 Datos de la simulación en el Radial de los circuitos de 4.16 kV de Mayarí

Estas pérdidas representadas en la tabla 2.2, es la energía que se pierde en las líneas primarias en una hora, son obtenidas de la simulación de los circuitos primero a 4,16 kV y luego a 13.2 kV; también del lado derecho de la tabla obtenemos el voltaje de fase, este en 4.16 kV debe ser de 2.5 kV mientras que en 13.2 kV es 7.97 kV; en ambos casos la caída de voltaje permisible en el peor de los nodos no puede ser mayor del diez por ciento.

De estos 11 circuitos de la tabla 2.2 escogeremos los dos con mayores problemas técnicos, es decir El Purio y Felton.

Circuitos	Pérdidas en el	el Circuito Voltaje		Itaje en el	en el peor nodo		
	A 4.16 kV	A 13.2KV	4.16 kV		V 4.16 kV 13.2 kV		V
						ΔV	
	kW h	kW h	V de Fase	∆V >10%	V de Fase	>10%	
Felton	140	9	1.65	33.2	7.77	-	
El Purio	226	19	1.7	32	7.75	-	

Tabla 2.3 Los dos circuitos con mayores pérdidas técnicas.

En las siguientes tablas se reflejan el flujo de carga trifásico realizado en el Radial estos dos circuitos con las variantes de 4,16 kV y 13,2 kV. De esta manera se puede establecer una comparación y apreciar los resultados de la propuesta del cambio de voltaje.

2.5.1.1 Resultado de la corrida de flujo trifásico en el Radial a 4.16 kV en el circuito Felton.

Concepto	Valor	Unidad
Potencia activa de las cargas	647	kW
Potencia reactiva de las cargas	276	kvar
Pérdidas activas en líneas	144	kW
Pérdidas reactivas en líneas	53	kvar
Pérdidas de cobre en transf.	14	kW
Pérdidas de hierro en transf.	5	kW
Pérd. totales de potencia activa	163	kW
% de pérdidas de potencia	20	%
Potencia reactiva en capacitores.	0	Ckvar
Energía activa de las cargas	6	MW.h
Energía reactiva de las cargas	3	Mvar.h
Pérdidas de energía en líneas	2475	kW.h
Pérdidas de energía Cu en transf.	420	kW.h
Pérdidas de energía Fe en transf.	128	kW.h
Pérdidas totales de energía	3024	kW.h
% de pérdidas de energía	33	%

Tabla 2.4 Felton a 4.16 kV

Las pérdidas que tomamos para analizar el circuito son las pérdidas activas en líneas, que para este circuito son de 144 kW en una hora.

2.5.1.2 Resultado de la corrida de flujo trifásico en el Radial a 13.2 kV en el circuito Felton.

Concepto	Valor	Unidad
Potencia activa de las cargas	785	kW
Potencia reactiva de las cargas	330	kvar
Pérdidas activas en líneas	9	kW
Pérdidas reactivas en líneas	4	kvar
Pérdidas de cobre en transf.	11	kW
Pérdidas de hierro en transf.	5	kW
Pérd. totales de potencia activa	25	kW
% de pérdidas de potencia	3	%
Potencia reactiva en capacitores.	0	Ckvar
Energía activa de las cargas	9	MW.h
Energía reactiva de las cargas	4	Mvar.h
Pérdidas de energía en líneas	244	kW.h
Pérdidas de energía Cu en transf.	274	kW.h
Pérdidas de energía Fe en transf.	128	kW.h
Pérdidas totales de energía	646	kW.h
% de pérdidas de energía	6	%

Tabla 2.5 Felton a 13.2 kV

Un análisis sencillo nos demuestra que solo con la conversión de 4.16/13.2 kV las pérdidas en las líneas primarias disminuyen 136 kW.

2.5.2.1 Resultado de la corrida de flujo trifásico en el Radial a 4.16 kV en el circuito El Purio.

Las pérdidas técnicas que se producen en las líneas son de 226 kW en una hora.

Concepto	Valor	Unidad
Potencia activa de las cargas	922	kW
Potencia reactiva de las cargas	279	kvar
Pérdidas activas en líneas	226	kW
Pérdidas reactivas en líneas	184	kvar
Pérdidas de cobre en transf.	16	kW
Pérdidas de hierro en transf.	8	kW
Pérd. totales de potencia activa	234	kW
% de pérdidas de potencia	20	%
Potencia reactiva en capacitores.	0	Ckvar
Energía activa de las cargas	1	MW.h
Energía reactiva de las cargas	5	Mvar.h
Pérdidas de energía en líneas	2674	kW.h
Pérdidas de energía Cu en transf.	420	kW.h
Pérdidas de energía Fe en transf.	182	kW.h
Pérdidas totales de energía	3275	kW.h
% de pérdidas de energía	71	%

Tabla 2.6 El Purio a 4.16 kV

2.5.2.2 Resultado de la corrida de flujo trifásico en el Radial a 13.2 kV en el circuito El Purio.

Concepto	Valor	Unidad
Potencia activa de las cargas	1117	kW
Potencia reactiva de las cargas	452	kvar
Pérdidas activas en líneas	19	kW
Pérdidas reactivas en líneas	15	kvar
Pérdidas de cobre en transf.	14	kW
Pérdidas de hierro en transf.	8	kW
Pérd. totales de potencia activa	38	kW
% de pérdidas de potencia	3	%
Potencia reactiva en capacitores.	0	Ckvar
Energía activa de las cargas	11	MW.h
Energía reactiva de las cargas	4	Mvar.h
Pérdidas de energía en líneas	263	kW.h
Pérdidas de energía Cu en transf.	294	kW.h
Pérdidas de energía Fe en transf.	182	kW.h
Pérdidas totales de energía	739	kW.h
% de pérdidas de energía	6	%

Tabla 2.7 El Purio a 13.2 kV

2.5.3 Descripci ón del software utilizado.

RADIAL es un software desarrollado por el Centro de Estudios Electro energéticos (**CEE**) de la Universidad Central "Marta Abreu" de Las Villas, Cuba, concebido para realizar, de forma amistosa, prácticamente todos los estudios relacionados con las redes eléctricas radiales de distribución. Está programado usando técnicas de programación orientada a objetos y requiere para su ejecución configuraciones mínimas, prácticamente disponibles en cualquier PC.

RADIAL realiza los cálculos siguientes:

Flujo de carga monofásico (considera las cargas balanceadas y las líneas simétricas)

Flujo de carga trifásico (considera las corrientes reales por fase y las líneas asimétricas) Capacitores:

Ubicación óptima de un banco dado para máxima reducción de pérdidas de potencia Ubicación óptima de un banco dado para máxima reducción de pérdidas de energía Selección óptima de los bancos a instalar para máxima reducción de pérdidas de potencia

Selección óptima de los bancos a instalar para máxima reducción de pérdidas de energía

Cálculo de las corrientes de corto circuitos de circuitos radiales

Selección y coordinación de protecciones en circuitos radiales

Análisis de cogeneración

Corridas de flujo monofásico simultánea de varios circuitos

Traspaso de cargas de un circuito a otro

Reubicación de la subestación

La información requerida para el uso del RADIAL se divide en dos grandes grupos:

La general, ofrecida por RADIAL "por defecto", y que puede modificarse de acuerdo a los datos más convenientes que disponga el usuario; y La particular, que se vincula con los circuitos que se analizan. Esta última se introduce a través de cajas de diálogo abiertas sobre el diagrama monolineal del circuito, el que se edita de una forma simple, ágil y de fácil manipulación.

Este programa es el que actualmente se usa en las todas empresas de la Unión Eléctrica Nacional (UNE), para la simulación de los circuitos primarios de distribución de media tensión.

2.6 Análisis del cambio

El propósito de la propuesta que hacemos con el cambio del voltaje de 4.16/13.2 kV en el sistema de distribución primario es para resolver un problema técnico que incide negativamente en la economía del país y en la eficiencia con que se lleva la energía a los consumidores. El voltaje de 4.16 kV fue una norma americana empleada desde

los años 60 en nuestro país, en su momento su impacto fue positivo al suministrarle energía a los escasos clientes de aquella época. Con el paso de los años el creciente desarrollo tecnológico creó mayor demanda de consumo al aumentar la población y los equipos empleados por la misma tanto en los hogares como en los centros de producción y servicios. Por tanto hubo un crecimiento en las redes no solo en cuanto a la carga que debía soportar sino que también la longitud de la misma aumentó, esto trajo como consecuencia ineficiencias en la facturación, entrega y distribución de la energía eléctrica, pues los niveles de pérdidas técnicas en los circuitos primarios aumentaron y en algunos ramales de las redes existen caídas de voltajes superiores al máximo permisible.

Al sustituir los niveles de voltajes de 4.16 kV a 13.2 kV, además de disminuir las pérdidas técnicas mejora la facturación de energía y se lograr eliminar zonas de bajo voltaje que se traduce en un servicio con mayor calidad y confiabilidad.

2.7 Propuestas de los circuitos de 4.16 kV a convertir en 13.2kV.

Primeramente debemos analizar que para este cambio de voltaje debemos cambiar el transformador de la subestación principal; los transformadores actuales no presentan problemas de sobrecarga por tanto la capacidad de los nuevos dispositivos será la misma.

Debido al análisis efectuado en el epígrafe 2.5 conocimos el valor de las pérdidas técnicas en estos circuitos, el siguiente paso será encontrar cual de estos podemos desarrollar como un futuro proyecto, no solo valiéndonos de los resultados técnicos sino de los económicos también, para llegar a esa conclusión hemos calculado el Valor Actual Neto (VAN) y la Tasa Interna de Retorno (TIR), la cual será mejor explicada en el próximo capitulo, la aplicamos en este por que resulta decisivo para el desarrollo del itinerario planificado.

De la Tabla 3.1 del próximo Capitulo hemos estimado que solo en los circuitos de El Purio y Felton es factible la ejecución de la conversión del voltaje primario de distribución de 4.16/13.2kV. Por tanto el siguiente paso será hacer una caracterización de estos circuitos.

2.7.1 El Purio

El circuito El Purio de la UEB Eléctrica Mayarí se identifica con el código 3035, tiene como tensión primaria nominal 4.16 kV, alimentándose a través del interruptor 4470 Nicaro Sagua desde la subestación Levisa 110 kV y por medio del desconectivo H-477 ubicado en la subestación la cual cuenta con Nulec. En esta subestación se convierte de 33 kV a 4.16 kV mediante un transformador reductor de 25000 kVA. Existen en el circuito un total de 66 transformadores instalados, para una potencia de distribución equivalente a 2200 kVA. Las líneas primarias de este circuito están constituidas por conductores trenzados de aluminio ACSR 35 mm² cuya longitud es de 12.221km. El circuito se extiende a lo largo de los Consejos Popular de El Purio, Río Grande, con cerca 1220 clientes entre residencial y estatal. La demanda máxima es de 1156 kW.

2.7.1.1 Análisis de las lecturas del Nulec de El Purio y la energía facturada en la Oficina Comercial de la UEB de Mayarí.

Como definimos en el primer capitulo las pérdidas eléctricas totales que es la energía dejada de facturar se dividen en perdidas técnicas y pérdidas comerciales, a continuación veremos como se comportan las mismas en El Purio.

Del equipo de medición se tomaron los siguientes consumos correspondientes a finales del año 2008 y reflejados en la tabla 2.4.

Lecturas del Nulec de El Purio								
Mes Total Kwh. Dem. Máxima Power Factor								
Dic-08	496843	1480	0.94					
Nov-00	482590	1437	0.95					
Oct-08	484253	1359	0.94					
Sep-08	50321	1037	0.92					
Ago-08	530927	1236	0.94					

Tabla 2.4

Consumos mensuales en el año 2008

El "Por Pueblos", es un registro que lleva el área de Comercial en la Empresa Eléctrica que indica la energía total facturada las distintas zonas que conforman una localidad determinada. Para comprobar el estado de las pérdidas técnicas y comerciales, tomamos la energía facturada en diciembre del 2008 (345567 kW) por el área de comercial, y el consumo registrado en el Nulec en el mes de noviembre del mismo año 482590 kW, se estableció una diferencia que da como resultado 137 023 MW en un mes, las pérdidas técnicas en el circuito primario según la corrida que hicimos en el Radial y estimándolas para un mes serían de 60233 kW, estas representaría un 43.9% del total de las pérdidas, y un 12.4% de la energía entregada al circuito; quedando aun las pérdidas en el circuito secundario, la acometida, el contador de energía eléctrica, los transformadores; a parte de las comerciales.

Otro punto a valorar es la caída de tensión que se produce en algunos nodos de este circuito que llega a ser hasta de un 32% de 10 que es máximo permisible. Este es un parámetro técnico a tener muy en cuenta, pues una de las exigencias de todo sistema de suministro eléctrico es su confiabilidad.

A continuación se realiza una descripción de la ubicación exacta de los transformadores.

No	Código	Direcci ón	Capacidad
1	MB-523	Siberia edificio 8	100
2	MB-889	Siberia edificio	50
3	MB-890	Siberia edificio	50
4	MB526	EL Purio Levisita	10
5	MB527	Vivero	10
6	MB528	Centro comunales el Purio	50
7	MB529	Brigada Laterita el Purio	15
8		Brigada Laterita el Purio	37.5
9	MB530	Centro comunales el Purio	37.5
10	MB531	Alto del Purio tendedera	100
11	MB532	Silo MGR el Purio	10

12	MB533	Bombeo población el Purio	25
13	MB533	Bombeo población el Purio	25
14	MB534	U/M BTC	25
15	MB534	U/M BTC	25
16	MB535	Cochiquera ESUNI	10
17		Calle Simón Bolivar	25
18	MB752	Barrio La Marina	50
19	MB-825	Barrio La Marina	25
20	MB-826	Los Cilos del Purio	15
21	MB1021	Comunidad Militar	15
22	MB1022	U/Militar Purio	100
23		U/Militar Purio	75
24	MB1031	Canta la rana	75
25	MB999	Sala video	50
26	MB1000	EL Purio final	50
27	MB502	Policl ínico	25
28	MB503	Escuela de oficios	25
29		Escuela de oficios	25
30	MB504	Edificio #3 .Las 72 viviendas	25
31	MB505	La tienda	5
32	MB506	Las 72 viviendas edificio 4	25
33	MB507	Las 72 viviendas edificio 16	25
34	MB508	Rio Grande 2 Edificio 9	37.5
35	MB509	Rio Grande 2 Edificio 12	37.5
36	MB510	Rio Grande 2 Edificio 8	75
37	MB511	Rio Grande 2 Edificio 8	75
38	MB1006	Rio Grande 2	50
39	MB1007	Rio Grande 3	50
40	MB104	Rio Grande 2	50
41	MB512	Rio Grande el resplandor	25
42	MB-513	Rio Grande panadería	37.5
43		Rio Grande panadería	37.5

44	MB514	Reparto René ramos Latourt	37.5
45		Reparto René ramos Latourt	15
46	MB515	Reparto René ramos Latourt	75
47	MB516	Edificio Girón Rio Grande	37.5
48	MB517	Los tanques Rio Grande	50
49	MB518	Los tanques Rio Grande	15
50	MB-519	Politécnico bomba	25
51		Politécnico bomba	10
52	MB520	Politécnico	25
53		Politécnico	50
54	MB521	Siberia edificio 4 y 5	37.5
55	MB522	Siberia edificio 5	50
56	MB523	Siberia edificio 8	100
57	MB889	Siberia	50
58	MB890	Siberia	50
59	MB524	Siberia edificio 3	50
60	MB525	Siberia Ioma de los Chivos	15
61	MB620	Edificio 6	50
62	MB744	Oro Negro	15
63		Oro Negro	15
64		Oro Negro	15
65	MB681	Parque de Levisa	50
66		Parque de Levisa	37.5

2.5 Ubicación de los transformadores de distribución de El Purio

2.7.2 Circuito de Felton

El circuito Felton de la UEB Eléctrica Mayarí, tiene como tensión primaria nominal 4.16 kV, alimentándose a través del interruptor 4460 Nicaro Pinares desde la subestación Levisa 110 kV y por medio del desconectivo H-1031 ubicado en la subestación la cual cuenta con un Nulec. En esta subestación se convierte de 33 kV a 4.16 kV mediante un transformador reductor de 1000 kVA. Existen en el circuito un total de 47 transformadores instalados, para una potencia de distribución equivalente a 1755 kVA. Las líneas primarias de este circuito están constituidas por conductores trenzados de aluminio ACSR 35 mm² y tienen una longitud de 6.993 Km. Este circuito se extiende a lo largo del Consejo Popular de Felton y cuenta con cerca 570 clientes entre residencial y estatal.

2.7.2.1 Análisis de las lecturas del Nulec de El Purio y la energía facturada en el área Comercial de la UEB de Mayarí.

Lecturas del Nulec de Felton					
Mes	Consumo	Peak Time	Demanda Máx.	Power Factor	
Ene-09	154235	08/01/2009 06:00:00 p.m.	463	0.97	
oct-08	99766	17/12/2008 06:15:00 p.m.	458	0.94	
Sep-08	73797	28/09/2008 05:00:00 p.m.	347	0.92	
Ago-08	39605	27/08/2008 06:30:00 p.m.	422	0.93	
Abr-08	13743	28/04/2008 04:00:00 p.m.	358	0.94	

Tabla 2.6 Nulec de Felton

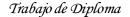
Aquí efectuamos el mismo procedimiento para buscar las pérdidas técnicas en la red de distribución, en este caso tomamos la energía facturada en febrero del 2009 que aparece en el Por Pueblo y es de 106852 Kwh., establecemos una diferencia entre esta y la que aparece en el mes de febrero de 2009 en el Nulec y nos da que la energía dejada de facturar es de 47383 lo que representa un 31%. Las pérdidas técnicas simuladas en el Radias nos dan a razón de 140 kW cada hora, si la llevamos a escala mensual nos daría alrededor de 35000 Kwh; de aquí podemos concluir que las pérdidas

técnicas en el circuito de distribución primaria representa alrededor del 73.8% de las pérdidas totales. En el recorrido por este circuito se procedió a efectuar el levantamiento de los transformadores instalados para un mejor análisis, los cuales serán mostrados en la Tabla 2.7.

No.	MB	Direcci ón	KVA
1	MB 383	1er pueblo calle 19 final	50
2	MB 384	1er pueblo calle 19 ≠2	25
3	MB 385	Calle 8va x ferrocarriles	50
4	MB 386	1er pueblo calle 17	10
5	MB 387	1er pueblo	37,5
6	MB 383	1er pueblo calle 19	75
7	MB 389	Cupet	50
8	MB 389	Cupet	50
9	MB 390	Puerto	100
10	MB 390	Puerto	25
11	MB 391	Frete al parque	50
12	MB 391	Frete al parque	75
13	MB 392	Convetidor	160
14	MB 393	Calle 1era ante del Bambu	100
15	MB 394	Cabaret Bambú. Funeraria T.R.D	25
16	MB 395	Taller Nicaro	25
17	MB 395	Taller Nicaro	250
18	MB 395	Taller Nicaro	250
19	MB 396	C/I Amistad, Calle 11	15
20	MB 396	Centro telefonico	10
21	MB 396	Centro telefonico	5
22	MB-397	Felton 2do Pueblo frente a calle 20	50
23	MB 398	Calle 1ra, Edif # 5	5
24	MB 399	Policlin ico	15
25	MB 399	Policlin ico	50
26	MB 400	Calle 1ra frente al banco	37,5

27	MB 401	Calle 1ra Punta del Cayo 1er -oo-	50
28	MB 402	Calle 1ra campo bolla	50
29	MB 403	Dulcer ía	50
30	MB 403	Punta del Cayo	25
31	MB 404	Carpintería y Barrio	10
32	MB 404	Carpintería y Barrio	15
33	MB 406	felton	37,5
34	MB 962	Calle 1ra ante del campo bolla	10
35	MB 407	Calle 1ra Punta del Cayo 1er -oo-	5
36	MB619	Ferrocarriles	15
37	MB755	Calle 6ta edif.42 2do pueblo	50
38	MB952	Felton 2do Pueblo frente a calle 20	50
39	MB610	Plaza Felton	15
40	MB654	Calle 4ta Felton Carpinteria	37,5
41	MB 654	Calle 4ta Felton	37,5
42	MB6988	Oro Negro	15
43	MB6988	Oro Negro	15
44	MB6988	Oro Negro	15
45	MB298	Calle 2da	37,5
46	MB 422	1er pueblo calle 19 final	15
47	MB 423	1er pueblo calle 19 final	15

Tabla 2.7 Transformadores del circuito Felton



Antes de efectuar una conversión de 4.16/13.2 kV en estos circuitos es preciso aclarar que ya en Cuba desde hace varios años, tiene normado para la construcción y mantenimiento de líneas de media tensión el empleo de elementos de 15 kV, debido a que ya en el mundo las actuales construcciones de circuitos primarios de distribución emplean niveles de voltajes altos para tener la menor expresión de pérdidas técnicas en las líneas. Por eso en el recorrido efectuado por los circuitos Felton y El Purio solamente encontramos como elementos propios de una línea de 4,16 kV, los transformadores y los pararrayos, los demás elementos que conforman las estructuras física del circuito son los usados en las redes de 15 kV que se han ido incorporando en los mantenimientos periódicos a la línea.

2.8 Conclusiones

La infraestructura eléctrica en el municipio a 33 kV no tiene problemas para asimilar nuevas cargas, y en la zona se están produciendo nuevas inversiones como bombeos y la construcción del Trasvase, si embargo en la distribución primaria por 4.16 kV existen 5 circuitos con problemas de operación que se reflejan principalmente en las pérdidas técnicas; estos son: Levisa, El Purio, Felton, Nicaro, y Guerrita. De ellos escogimos El Purio y Feltón por presentar ademas de las mayores pérdidas técnicas una caída de voltaje superior al máximo permisible.

Capítulo III. Análisis de los resultados

- 3.1 Introducción
- 3.2 Valoración económica de la conversión de 4.16/13.2 kV.
- 3.3 Metodología para el cálculo técnico económico del proyecto
- 3.4 Impacto al medio ambiente.
- 3.5 Conclusiones

3.1 Introducción

En el presente capítulo se expone una valoración de los resultados del cambio de tensión de 4.16 kV a 13.2 kV en los circuitos El Purio y Felton. Además de efecto ecológico que tiene la generación de electricidad.

3.2 Valoración económica de la conversión de 4.16/13.2 kV.

El petróleo es el producto más comercializado a nivel mundial. Tanto en término como en volumen representa el 36 % del balance total de energía. El consumo mundial de petróleo que ha tenido tendencia a crecer, trae consigo un aumento de los precios a niveles nunca antes vistos con un récord de 147.27 USD por barril. Aunque la crisis financiera de Occidente, los gastos militares norteamericanos y la ambición de los especuladores en las bolsas ha ocasionado un descenso del crudo en más del 50 por ciento.

La conversión de tensión desde el punto de vista económico reporta ingresos al mejorar la facturación de energía, pues la diferencia entre la energía entregada y la que se factura será menor.

Para el análisis de todas las variantes se tiene en cuenta los siguientes datos:

- 1 barril = 158.9 Litros = 60.53 USD
 7.5 barril = 1 Tonelada = 453.97 USD
 1KWh = 0.133 USD
- ➤ El costo de la mano de obra y las normas de trabajo fueron suministradas y analizadas por el Departamento de Recursos Humanos de la UEB Eléctrica Holguín.
- ➤ El precio de los materiales (pararrayos y transformadores) fueron proporcionados por el Departamento de Contabilidad de la UEB Mayarí.

3.2.1 Conversión de 4.16/13.2 kV en Felton.

Primeramente debemos analizar que para este cambio de voltaje debemos cambiar el transformador de la subestación principal; el transformador actual no presenta problema de sobrecarga, por tanto la capacidad de los nuevos dispositivos será la misma. Es necesario en el circuito, realizar el cambio de los 47 transformadores de distribución de 4.16 kV, por transformadores que puedan operar a partir de redes de 13.8 kV. No es necesario cambiar los aisladores u otras estructuras porque los actuales son óptimos para el nivel de tensión 13.8 kV, sin embargo todos los pararrayos deben ser sustituidos.

Con esta acción se logran reducir las pérdidas en las líneas primarias que hasta hoy son de 460.8 MWh al año a 28.78 MWh/a, lo que constituye un ahorro de 432.02 MWh/a, y representa un ahorro de **57456 USD**, si se considera que para entregar 1kWh por el SEN se necesitan 0.133 USD. Por lo que se puede adquirir **126.3 toneladas** de petróleo.

En la tabla siguiente se tiene la relación de los transformadores por capacidad y precio que se necesitan para llevar a cabo en la conversión de Felton. En el circuito no es necesario cambiar el aislamiento pues está diseñado para 13.8 kV, pero sí el cambio de los 52 pararrayos con costo 36.35 USD c/u con un valor en su conjunto de 1 890 USD. A esto le tendríamos que sumar el costo de los 47 transformadores del circuito más el de la subestación reductora los cuales costarían 81074USD. Para la mano de obra se asumió que se trabajó con una brigada de linieros la cual gana 46\$ en MN y tiene por norma una hora y media para instalar un transformador y 16 minutos para reemplazar el pararrayo, esto no da un total de 4324 USD en mano de obra. Estos son los gastos producidos en la compra de los transformadores y pararrayos más los recursos humanos que sumados son unos 87288USD. Sin embargo el material retirado tiene un costo al cual se le estima una depreciación para que nos de un valor real; sobre esta base calculamos el costo total de la inversión. Vale enfatizar que los elementos de las redes de 4,16kV son muy difíciles de conseguir por su escasa fabricación por tanto estos materiales retirados podemos utilizarlos en las restantes redes de 4160 V existentes.

Capacidad	Cantidad	Precio (USD)	Costo total
(kVA)	7		(USD)
5	3	398,6	1195,8
10	4	588,25	2353
15	10	680,95	6809,5
25	5	813.69	4068,3
37.5	6	1035,6	6213,6
50	12	1658	19896
75	2	2066,3	4132,6
100	2	2655,3	5310,6
160	1	3122,1	3122,1
250	2	4988	9976
1600	1	17996.62	17996,6
Total	48		81074,1

3.1 Tabla de precios de los transformadores instalados.

El valor del material retirado sería:

- Pararrayos: 52 unidades con un valor de 988 USD y un precio de 19 USD c/u ya aplicada una depreciación del 28%
- > Transformadores de 4.16 kV (Con una depreciación de un 35%)

Capacidad	Cantidad	Precio (USD)	Sin depreciaci ón	Costo total con depreciaci ón
(kVA)			(USD)	(USD)
5	3	259	777	505,1
10	4	386,6	1546,4	1005,2
15	10	598	5980	3887,0
25	5	691,56	3455	2245,8
37.5	6	955,43	5732,58	3726,2
50	12	1205,6	14467,2	9403,7
75	2	1672,65	3345,3	2174,4
100	2	2310,1	4620,2	3003,1
160	1	3122,1	3122,1	2029,4
250	2	4365,5	8731	5675,2
1600	1	12115,75	12115,75	7875,2
Total	48		63892,53	41530,1

3.2 Tabla de precios de los transformadores retirados.

Por tanto obtendríamos 42518 USD en materiales retirados.

El costo de la inversión inicial sería el valor del material instalado más la mano de obra menos el costo del material retirado. Esto nos da que la inversión inicial será de 44 770 USD.

3.2.2 Conversión de 4.16/13.2 kV en El Purio.

La valoración económica en este circuito es muy similar a la anterior, no hay que hacer cambio de aisladores y el transformador de la subestación principal será de la misma capacidad por no presentar el circuito problemas de sobrecargas.

El primer análisis será del costo de los materiales a instalar.

- Mano de obra, se determino de la misma forma y su valor fue de 6072 USD.
- Pararrayos: 70 unidades con un valor de 2545 USD y un precio de 36.35 USD c/u.
- Compra de los 67 transformadores de 13.2 kV equivalente a 99146 USD.

Capacidad	Cantidad	Precio (USD)	Costo total
(kVA)			(USD)
5	1	398,6	398,6
10	5	588,25	2941,25
15	9	680,95	6120
25	15	813.69	12195
37.5	10	1035,6	10356
50	17	1658	28186
75	5	2066,3	10331,5
100	4	2655,3	10621,2
160	0	3122,1	0
250	0	4988	0
1600	1	17996.62	17996,6
Total	67		99146,15

3.3 Tabla de precios de los transformadores instalados.

El costo en materiales instalados más la mano de obra sería de 107763 USD.

Valor del material retirado de la línea.

Pararrayos: 70 unidades con un valor de 1330 USD y un precio de 19 USD c/u ya aplicada una depreciación del 28%.

> T	Fransformadores	de 4.16 kV	(Con una de	epreciación (de un 35% `	١
-----	------------------------	------------	-------------	---------------	-------------	---

Capacidad	Cantidad	Precio (USD)	Sin depreciaci ón	Costo total con depreciaci ón
(kVA)			(USD)	(USD)
5	1	259	259	168,4
10	5	386,6	1933	1256,5
15	9	598	5382	3498,3
25	15	691,56	10365	6737,3
37.5	10	955,43	9554,3	6210,3
50	17	1205,6	20495,2	13321,9
75	5	1672,65	8363,25	5436,1
100	4	2310,1	9240,4	6006,3
160	0	3122,1	0	0,0
250	0	4365,5	0	0,0
1600	1	12115,75	12115,75	7875,2
Total	67		77707,9	50510,1

3.4 Tabla de precios de los transformadores de 4.16 kV retirados.

En total el material retirado tendría un valor de 51840 USD.

La inversión de este circuito estaría en el orden de los 48636 USD.

3.3 Metodología para el cálculo técnico económico del proyecto

En la confiabilidad del Sistema Electroenergético Nacional, ocupa una parte importante de las redes eléctricas, de ahí la necesidad de elegir variantes de esquemas de la red en proceso de proyección, así como los regímenes de explotación partiendo del criterio de racionalidad económica y garantía del suministro eléctrico.

Trabajo de Diploma

Capitulo III

Para la selección de la variante óptima se realiza de acuerdo su sustitución recíproca, es decir, las variantes comparadas según los índices económicos realizados deben poseer el mismo grado de confiabilidad y calidad de la energía.

Entre los métodos que existen para comparar alternativas de inversión están.

- Método del valor actual neto (VAN).
- Método de la tasa interna de retorno (TIR).
- > Tiempo de amortización.

Valor Actual Neto.

El VAN se define como el valor actualizado del flujo de ingresos netos (in) generados durante la vida útil del proyecto, es decir del saldo entre los ingresos y los gastos anuales que impliquen derogaciones de efectivos.

Para la utilización del VAN es necesario una tasa de actualización(a). Esta tasa debe reflejar el costo de oportunidad del capital que expresa la garantía del rendimiento mínimo. En otras palabras una tasa similar a la que se obtendrían con cualquier otra alternativa de inversión. Para el cálculo de esta tasa generalmente se utiliza la tasa de interés existente sobre préstamos a largo plazo en el mercado de capitales.

El Valor Actual Neto se calcula mediante la determinación en cada año de todos ingresos en efectivo y de salidas anuales como ingresos, desde que se incurre en el primer gasto del proceso inversionista, hasta que se concluye la vida útil estimada de operación o funcionamiento del proyecto.

Tasa Interna de Retorno

La tasa interna de retorno TIR es aquella que el valor anual neto de un proyecto es cero, es decir que el valor actual neto del flujo de ingresos es igual al valor neto del flujo de egresos.

La TIR se calcula en esencia igual que el VAN, la única diferencia es que se estiman tasas de actualización a que el VAN es igual a cero en un proceso de actualizaciones sucesivas.

El procedimiento general consiste en utilizar aquellas tasas de actualización que aproximen lo más posible el VAN a cero, hasta llegar a que este sea negativo. La TIR se encontrará entre dos tasas, por supuesto que mientras mayor sea la aproximación a cero mayor será la exactitud obtenida no debiendo la diferencia intertasas de (+-) 2%.

3.3.1 Cálculo del VAN y el TIR para los circuitos Felton y El Purio.

Circuitos	Felton	El Purio
tasa	12%	12%
cost. Inversión inicial	44 770 USD	48 636 USD
Ahorro del 1er año	57456 USD	88 099 USD
Ahorro del 2do año	57457 USD	88 099 USD
Ahorro del 3er año	57458 USD	88 099 USD
Ahorro del 4to año	57459 USD	88 099 USD
Ahorro del 5to año	57460 USD	88 099 USD
Ahorro del 6to año	57461 USD	88 099 USD
VAN	170 941 USD	279 977 USD
TIR 4to	123%	178%
TIR 5to	126%	180%
TIR 6to	127%	181%

3.5 Cálculo del VAN y la TIR

Los resultados positivos nos indican que el proyecto puede ser ejecutado desde el punto de vista económico.

3.3.2 Tiempo de Amortización

El tiempo de amortización **(Tam)** sería el resultado entre el costo de la inversión **(costo inver.)** 44770 USD, más el 12 % de la tasa de interés y esta suma dividirla entre el costo del ahorro (Cah) 57458 USD, esta es la energía ahorrada por concepto de disminución de pérdidas (432 MWh), y se calcularía por la siguiente expresión.

Trabajo de Diploma

Felton

T am = (costo inver. + Tasa de interés)/ Cah

De aquí se puede afirmar que el tiempo de amortización es de 0,87 años, lo que sería igual a 10 meses y dos semanas.

El Purio

Procediendo de la misma manera se calcula el tiempo de amortización para este circuito y nos da como resultado que el proyecto se amortiza en 7 meses y dos semanas aproximadamente.

3.4 Impacto al medio ambiente.

La generación de energía eléctrica en el mundo entero sigue dependiendo en gran parte de la quema de combustibles fósiles --petróleo, gas y carbón-- que son sumamente contaminantes. Una de las amenazas más graves para el medio ambiente mundial procede de esta contaminación: las emisiones en rápido aumento de los denominados gases "de invernadero", en especial el dióxido de carbono (CC2) considerado por muchos científicos como el principal responsable del recalentamiento de la Tierra. Aunque los gobiernos se han comprometido con la tendencia mundial hacia una reducción de las cantidades de CO2 producidas por cada unidad de energía consumida, relativamente pocos países han logrado reducir la producción de gases de invernadero mediante el paso a los combustibles no fósiles.

En el presente trabajo de ingenier ía se ye que tiene su influencia también en el medio ambiente la conversión de un voltaje inferior a uno superior, tal es así que para generar 1kw de electricidad se expulsan 0.8 Kg. de dióxido de carbono.

Con la propuesta de nuestro trabajo en el municipio de Mayarí de la provincia Holguín, se dejan de expulsar al Medio Ambiente cerca de 197 toneladas de dióxido de carbono

por el concepto de la disminución de las pérdidas técnicas en los circuitos primarios de El Purio y Felton.

3.5 Conclusiones

En este capítulo se realiza el análisis económico de la inversión para tener base a la hora de invertir, encontrar el beneficio o ahorro que le imprime el diseño de la nueva línea al sistema da una visión de cuanto puede ser el aporte económico, se encontró las pérdidas por cada circuito y su evaluación monetaria, el costo por concepto de inversión además de una valoración ecológica y social del trabajo.

Conclusiones Generales

Luego de haber concluido nuestro trabajo llegamos a las siguientes conclusiones:

- 1 Con la ejecución del proyecto se logra un ahorro de 1094 MW/h al año por concepto de disminución de las pérdidas técnicas en los circuitos primarios de distribución de El Purio y Felton, lo que equivale a 145 555 USD. Con esta energía se podría alimentar el municipio Mayarí por dos días.
- 2 El país dejaría importar 320 toneladas de petróleo en un año.
- 3 Con la conversión de tensión en los dos circuitos a un nivel de 13,8 kV se eliminan considerablemente las perdidas de energía y las caídas de voltajes, teniendo una mayor calidad en el servicio a los consumidores.
- 4 Mejora la facturación de la UEB Eléctrica de Mayarí.
- 5 Se dejan de emitir 197 toneladas de Dióxido de Carbono al Medio Ambiente.

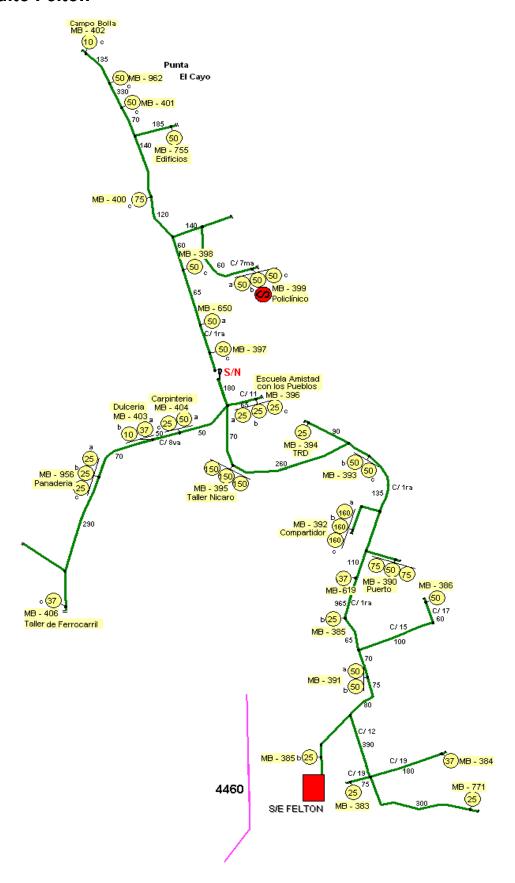
Recomendaciones

Una vez concluido el presente trabajo investigativo se pasará a hacer referencia a las siguientes recomendaciones.

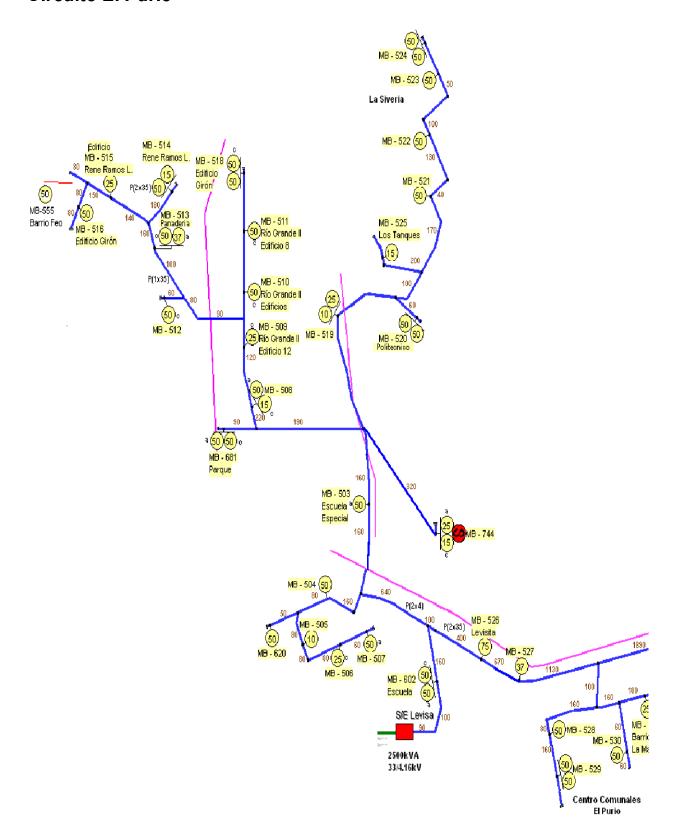
- Presentar el proyecto de conversión para obtener el financiamiento por parte de la Unión Nacional Eléctrica (UNE),
- 2- Una vez aprobado el financiamiento del proyecto, desarrollar la realización del mismo para mejorar la operacionalidad de los circuitos primarios.
- 3- Estudiar la factibilidad de este tipo de mejora para su aplicación en aquellos municipios de nuestra provincia donde sea necesario.
- 4- Establecer mecanismos que permitan mantener sobre esta base un buen programa sostenible de mejoras.
- 5- Realizar un estudio de las pérdidas no técnicas en los circuitos de El Purio y Felton.

Bibliografía

- Características de las Cargas del Sector Residencial en Cuba. Autores: Leonardo Casas Fernández, Alberto Ramírez González & Alberto Limonte Ruiz.
- COMITE DE DISTRIBUCIÓN COMISIÓN TÉCNICA, 1996. Guía sobre la calidad de la onda en las redes eléctricas, Madrid, España. 72 p
- 3. Conversión de Tensión de 4,16 / 13,8 kV en La Ciudad de Puerto Padre. Autor: Eisbel Sánchez Concepción. 2004.
- Desequilibrio y pérdidas en las instalaciones eléctricas F. Redondo Quintela, J.M. García Arévalo y N. Redondo Melchor Escuela Técnica Superior de Ingeniería Industrial. Universidad de Salamanca.
- Estudio para la disminución de las pérdidas eléctricas en el circuito # 7 de Moa.
 Autor: Alexeis Mora López, 2008.
- 6. Evaluación de impacto de interrupciones y pérdidas en el circuito Mayarí 2. Autor: Ramón Antonio Leyva Elías, 2009.
- Manual de Consumidores: Metodología para el cálculo de las pérdidas. La Habana: Unión Eléctrica, 2007.
- Power Point "La revolución energética resultados y perspectivas". Marzo 2008.
- 9. Seminario sobre Planificación de las redes de Distribución. E.N.E.L.-U.N.E. La Habana 1977.
- 10. Sistemas Electroenergéticos. I.S.P.J.A.E. 1991. Autor: Leonardo Casas Fernández.



- 11. TELENUL, SCADA de Supervisión y Telecontrol de Redes de Distribución Diseñado para Recerradores y Seccionalizadores NULEC. Autor: María Elena Otero Durán.
- 12. Transmisión de la Energía Eléctrica mediante la corriente alterna Héctor Llamo Laborí. Editorial Ediciones. La Habana 1985.


Anexos

Circuito Felton

Circuito El Purio

