

REPUBLICA DE CUBA MINISTERIO DE EDUCACION SUPERIOR INSTITUTO SUPERIOR MINERO METALÚRGICO DE MOA Dr. "ANTONIO NÚÑEZ JIMÉNEZ" FACULTAD DE GEOLOGIA Y MINERIA

TITULO: Diseño del Método de Explotación del Sector 14 del Yacimiento Moa Oriental

AUTOR: Yoelis Rueda Barrios

TUTORES: Dr.C Rafael Noa Monjes

Dr.C. Ramón Polanco Almanza

"Año de la Revolución Energética en Cuba" Moa-Holguín -Cuba Curso 2005-2006

Resumen

El Sector-14 forma parte del Yacimiento Moa Oriental, ubicado al norte del sistema montañoso Mayari-Baracoa ocupando un área de aproximadamente 388 833 m² resulta una zona estratégica en el abastecimiento del mineral para dar cumplimiento al plan de producción de la Mina Pedro Soto Alba para los próximos años.

Teniendo en cuenta sus reservas, que son aproximadamente 490 000 t, para la explotación de forma racional y se logre de forma eficaz la producción con la calidad requerida, se proyectó la explotación de Sector 14 del yacimiento Moa Oriental, proponiendo la utilización del equipamiento existente en la empresa minera, se empleara un esquema tecnológico basado en la combinación de excavadora camión con un orden de explotación a través de bancos múltiples paralelos que se van a explotar de oeste a este y en cada banco de norte a sur. Se realizó el cálculo del equipamiento necesario para la explotación de forma racional.

Para valorar la efectividad del proyecto se procedió al cálculo de costo de producción de una tonelada de mineral extraída, el cual resultó ser 6.7 USD por tonelada.

Al terminar dicha actividad se valoró el impacto ambiental que causará la explotación de Sector en estudio y por consiguiente se elaboró un plan de medidas correctoras para atenuar dicho impacto.

INDICE

INTRODUCCION	1
CAPITULO I. CARACTERÍSTICAS GENERALES DE LA REGIÓN Y DE LOS	
YACIMIENTOS	5
I.1. Introducción	5
I.2. Características geográficas de la región	5
I.3.Constitución geológica de la región	5
I.4.Infraestructura Económica	7
I.5.Relieve	8
I.6.Condiciones Hidrogeológicas	9
I.7.Condiciones climáticas.	
I.8.Recursos minerales	10
I.9.Grado de estudio de la región.	
CAPITULO II. UBICACIÓN DEL YACIMIENTO MOA ORIENTAL, GEO	
Y CARACTERIZACION DE LAS LATERITAS	12
II.1.Introducción	
II.2.Consideraciones para el cálculo del níquel equivalente	
II.3. Desarrollo geológico	
II.4Estratigrafía	15
II.5.Tectónica	
II.6.Características hidrogeológicas	
II.7.Interpretación sobre la génesis.	
II.8.Grado de desarrollo de la corteza de intemperismo	
II.8.1.Primera zona o zona superior	
II.8.2.Segunda zona	
II.8.3.Tercera zona	
II.8.4.Cuarta zona	
II.9.Corte típico	
II.10.Características físico - mecánicas de las rocas	
II.11.Características de las rocas del substrato	
II.12.Parámetros geomorfológicos	
II.13.Propiedades de los suelos	
CAPITULO III. ANALISIS DEL METODO DE EXPLOTACION EMPLEADO EN L	
MINA PEDRO SOTO ALBA	25
III.1.Caracterización de la minería	25
III.2.Desarrollo geológico	
III.3. Sistema de explotación por bancos (con retroexcavadoras)	
III.4.Parámetros fundamentales de explotación	
III.5.Fases de minería	
III.6.Equipamiento minero	
III.7.Medidas de seguridad para el trabajo con retroexcavadoras	
III.8.Medidas de seguridad para el trabajo con transporte automotor	
III.9.Medidas de seguridad para el trabajo con bulldózeres	
III 10 Protección personal	33

CAPÍTULO IV. DISEÑO DEL SISTEMA DE EXPLOTACIÓN DEL SECTOR 14	34
IV.1.Introducción	
IV.2.Caracterización del Sector 14 del yacimiento Moa Oriental	35
IV.3.Estimación de reservas	
IV.4.Control de la calidad del mineral	39
IV.5.Régimen de los trabajos y plazo de explotación del sector 14	39
IV.6.Planificación de los turnos de trabajo	40
IV.7.Volumen de los trabajos	
IV.8.Diseño de la escombrera	
IV.9.Diseño y construcción de caminos	
IV.10.Control de la erosión	
IV.11.Calculo del equipamiento	
IV.12.Calculo de la productividad de la excavadora	
IV.13.Calculo del transporte automotor durante la extracción	
IV.14. Equipamiento utilizado en el destape	
IV.15.Cálculo del buldózer durante las operaciones de destape	
IV.16.Calculo del transporte automotor durante el traslado del estéril a la escombrera	
CAPÍTULO V. CÁLCULO DE LOS ÍNDICES TECNICOS ECONÓMICOS	60
V.1.Introducción	60
V.2.Cálculos económicos	
V.3.Gastos originados por la actividad de destape	
V.4.Gastos directos durante el destape	
V.5.Gastos originados por la actividad de arranque	
V.6.Gastos directos durante el arranque	
V.7.Gastos por concepto de mantenimiento	
V.8.Gastos directos generales	65
V.9.Gastos indirectos u otros	
V.10Gastos totales	66
V.11.Costo de producción por tonelada de mineral extraído	66
CAPÍTULO VI. IMPACTO MEDIO AMBIENTAL	67
VI.1.Introducción	
VI.2. Alteraciones medioambientales producto a la explotación del Sector 14 del yacimien	to
Moa Oriental	67
Yamaniguey	
VI.3.Medidas preventivas y correctoras para minimizar el impacto ambiental surgido	70
VI.4.Drenaje y Control de erosión y sedimentación	72
VI.5.Protección e higiene del trabajo	73
VI.6.Requisitos en el puesto de trabajo	74
VI.6.1.Operador de bulldozer.	
VI.6.2.Operador del camión articulado VOLVO BM A40D	74
VI.6.3.Operador de la retroexcavadora LIEBHERR 984	75
Conclusiones	
Recomendaciones	78

INTRODUCCION

La minería tiene la misión de poner a disposición de la humanidad las materias primas minerales que necesita, o sea, buscarlas en las partes accesibles de la corteza terrestre y explotarlas; por su importancia ha resultado una actividad determinante en el desarrollo de la sociedad, pues de acuerdo a cálculos, entre los recursos naturales utilizados para la satisfacción de las necesidades, los minerales componen el 80%.

La principal fuente de materia prima con que cuenta la República de Cuba la constituyen los yacimientos de la corteza de intemperismo distribuidos ampliamente en la región nororiental del país, lo que ha hecho que se convierta en uno de los principales renglones de la economía nacional.

La elevación de la productividad del trabajo y la efectividad de la producción depende básicamente del nivel de la técnica, la tecnología y la organización de la producción utilizada. Por tal razón el presente trabajo de curso consistirá en proyectar la explotación del Área-14 del yacimiento Moa Oriental considerando las difíciles condiciones naturales existentes en la zona de trabajo.

Por todo lo anterior expuesto el **problema** que enfrenta la presente investigación está dado por la necesidad de explotación del Sector 14 de la Empresa Moa Níkel S.A "Comandante Pedro Soto Alba"

Nuestro trabajo tendrá como **objetivo** proyectar la explotación del Sector-14 del yacimiento Moa Oriental de la Empresa Moa Níkel S.A "Comandante Pedro Soto Alba"

Para darle cumplimiento al mismo nos hemos propuesto las siguientes tareas:

- Realizar una revisión bibliográfica relacionada con la geología y la minería del yacimiento que nos permita obtener su caracterización detallada.
- Realizar visitas de familiarización al sector y al yacimiento en general.
- Analizar el sistema de explotación utilizado en la actualidad en el yacimiento Moa Oriental.

- Calcular el equipamiento necesario para la explotación efectiva del sector y su valoración económica.
- Analizar las alteraciones ambientales que se producirá debido a las labores de explotación en el sector y definir las medidas correctoras para minimizar dicho impacto.

Hipótesis: Si se realiza el proyecto de explotación se podrá extraer racionalmente la materia prima que se encuentra en el Sector 14 del yacimiento Moa Oriental.

Actualidad de la investigación:

Dado el agotamiento total de los yacimientos de Moa Occidental y el aumento de la distancia de transportación desde el yacimiento Moa Oriental, la dirección de la mina de la Empresa Moa Níkel S.A "Comandante Pedro Soto Alba" ha considerado la posibilidad de aprovechamiento de las reservas geológicas ubicadas en la Zona de Moa Oriental y se ha decidido construir una nueva planta de pulpa en esa área de trabajo.

Para la extracción del material, es necesario realizar un estudio que permita diseñar y proponer un método de explotación racional de las reservas existentes.

La **novedad científica** radica en la propuesta y diseño del método de explotación para extraer el mineral, que garantice una mayor seguridad de laboreo y responda a los intereses económicos, ambientales y productivos.

Los aportes fundamentales de la investigación:

- Aportes teóricos: Consiste en el establecimiento de los parámetros del sistema de explotación y su diseño.
- Aportes prácticos: Consiste en la propuesta de un método de explotación y diseño para la extracción de la materia prima de la mina Moa Oriental de la Empresa Moa Níkel S.A "Comandante Pedro Soto Alba".

CAPITULO I. CARACTERÍSTICAS GENERALES DE LA REGIÓN Y DE LOS YACIMIENTOS

I.1. Introducción

En el presente capitulo se abordará las características geográficas donde están enclavados los principales yacimientos lateríticos de la nación cubana, así como los primeros estudios realizados en estas zonas, dirigidos a profundizar en el conocimiento de los potenciales económicos de sus reservas minerales.

I.2. Características geográficas de la región

Los yacimientos lateríticos, pertenecientes a Moa Níkel S.A. son los que comprende Moa Occidental (Zona A, Yamanigüey Cuerpos I y II, Atlantic, Zona Sur y Pronóstico, ubicados al oeste del río Moa, y el yacimiento Moa Oriental al este del mismo río. Estos yacimientos forman parte de los depósitos de óxido silicatados niquelíferos de Cuba.

Los yacimientos se encuentran localizados al noreste de la provincia de Holguín, en el municipio de Moa, los cuales se ubican dentro del macizó montañoso Moa –Baracoa en un área que esta limitada por las coordenadas de Lambert siguientes, (Figueredo, 2004):

Moa Occidental

Norte 221080 221170

Este 692970 697760

Moa Oriental

Norte 216000 221700

Este 697180 701120

I.3. Constitución geológica de la región

Los yacimientos que componen la región se desarrollan a partir de las ultrabásicas serpentinizadas que integran el cinturón hiperbásico de Cuba, el cual después de varias

hipótesis de acuerdo a su origen, se ha considerado sobre la base de los trabajos de Knipper, Fonseca, Telepuguin y otros, como una asociación ofiolítica, que tiene una relación puramente tectónica con las demás unidades que la secundan. Se puede dividir en cuatro complejos:

- Ultramáfico serpentinizado.
- Cumulativo.
- Diques paralelos de diabasas.
- Basáltico con rocas vulcanógenas metaforizadas y sedimentos pelágicos asociados.

La complicada estructura interna y el desigual desarrollo son las características fundamentales de esos complejos, así como la gran actividad tectónica que los afecta en forma de grietas tectónicas, que forman brechas y fajas de esquistosidad paralelas.

Los yacimientos estudiados se ubican en la región nororiental de Cuba donde la asociación ofiolítica se considera un manto alóctono de unos 2 500km² con potencia de 800 a 1000m, en cuya base afloran las rocas del manto alóctono representado fundamentalmente por areniscas y conglomerados del cretácico al paleoceno temprano y rocas volcánicas del cretácico, lo que hace pensar que el manto tectónico ofiolítico ocupó su actual posición en el paleoceno; esto se demuestra por la no presencia en las rocas de los contactos de deformaciones producidas por las altas temperaturas en caso de haberse formado en el lugar actual así como por el grado de deformación de las rocas, sobre todo, en la parte cercana a la base del manto. En el bloque oriental esta asociación está representada fundamentalmente sólo por tres de los complejos mencionados: el ultramáfico metamorfizado, el cumulativo y el de diques paralelos de diabasas.

El complejo ultramáfico metamorfizado abarca del 60 al 80% del volumen total de la asociación y está representado por harzburgitas, lherzolitas y en menor grado por dunitas y piroxenitas, todas intensamente serpentinizadas.

El complejo cumulativo se caracteriza por el bandeamiento de las rocas y está representado por dunitas, lherzalitas y piroxenitas, así como troctolitas y gabros.

Los dos complejos anteriores aparecen frecuentemente cortados por grietas rellenas de diabasas, las cuales forman el complejo de diques paralelos que aparecen como cuerpos tabulares con pocos metros de espesor, llegando hasta la cuarentena de metros.

I.4.Infraestructura Económica

El municipio de Moa se comunica por carretera con todo el país, existiendo una vía desde Moa hasta la ciudad de Baracoa y de igual manera se enlaza con la ciudad de Holguín y con el resto del país. Por vía aérea el territorio tiene comunicación actual con Ciudad de la Habana y Holguín mediante un aeropuerto. Existe además un puerto marítimo que permite el atraque de buques de pequeño y mediano calado, aquí llega el volumen principal de carga, y este se comunica con las fábricas mediante un trazado existente.

Económicamente la región está dentro de las más industrializadas del país, junto a sus riquezas minerales, se unen dos plantas procesadoras de menas de níquel en producción, la Cdte. Ernesto Che Guevara y la Cdte. Pedro Soto Alba, con capacidades de diseño original de 30 000t y 24 000t de concentrados de Ni + Co al año respectivamente. Este indicador constituye el segundo renglón exportable del país. Además de estas industrias, existen otras instalaciones de apoyo a la metalurgia y minería, tales como Empresa Mecánica del Níquel, Empresa Constructora y Reparadora del Níquel, Empresa de Servicios a la Unión del Níquel, Centro de Proyectos del Níquel, entre otras.

Además en la zona existen yacimientos de cromo refractario, clasificado como el mejor de su tipo en el territorio cubano, los cuales se encuentran distribuidos en las cuencas de los ríos Cayo Guan y Yamanigüey, procesándose una parte del mineral extraído en las plantas de beneficio de Cayo Guan y Punta Gorda.

También existen otros organismos importantes de la economía como el establecimiento de la Empresa Geólogo Minera, el Combinado Lácteo y otros. La agricultura está poco

desarrollada, aunque se hacen esfuerzos para seguir extendiéndola. Al sur se fomenta la ganadería y se explotan los recursos maderables.

I.5.Relieve

La región se encuentra enclavada en el grupo orográfico Sagua-Baracoa, por lo que el relieve es típicamente montañoso, caracterizado por la existencia de colinas elevadas y mesetas pequeñas y medianas, cuyas alturas oscilan entre 600 y 800m sobre el nivel del mar. Hacia el sur el relieve es más accidentado, en la Sierra de Moa, mientras que al norte se hace más suave con cotas que oscilan entre 40 y 50 m, disminuyendo gradualmente hacia la costa.

- Las áreas que se destacan en la región de los mismos son las siguientes:
- Parte meridional: Formada por elevadas y medianas colinas con cotas absolutas de 175 a 350m. A esta parte esta asociados los yacimientos: Atlantic, Zona Sur, Yamanigüey, y Pronóstico.
- Parte Central: Suavemente inclinada hacia el norte que representa la parte meridional del río Cabañas, con cotas absolutas de 164 y 17m en el lecho del río.
 A esta parte están asociadas los yacimientos zona A y Zona Central.
- Parte Septentrional: Es bajas y aplanadas con cotas de 17 a 100m en la orilla izquierda del río Cabañas. Moa Oriental:
- Moa Oriental: Está representadas por planicies y colinas, con cotas absolutas que van desde 15 a 385m sobre el nivel del mar.

El sistema orográfico está orientado en dirección E-W a NE-SW, siguiendo líneas paralelas o subparalelas al eje longitudinal de la Isla de Cuba. Existe un marcado predominio de pendientes relativamente suaves (ángulos 15°- 20°- 30°), lo que no excluye la presencia de abruptas pendientes con ángulos próximos a 70°-80°.

Un rasgo típico de la orografía de la región es la presencia de mesetas, en las cuales se han desarrollado potentes cortezas de intemperismo lateríticas, teniendo un marcado predominio en la región. En correspondencia con todo lo anteriormente planteado, los procesos erosivos en la región son intensos y las corrientes fluviales han escindido las

litologías máficas, ultramáficas y vulcanógenas originando valles profundos en forma de V, lo cual revela la juventud de dichos procesos.

I.6. Condiciones Hidrogeológicas

La red hidrográfica del área de estudio es densa, representada por numerosos ríos y arroyos, entre los que se encuentran los ríos Moa, Cabañas, Cayo Guan, Quesigua, Yagrumaje y Punta Gorda. La mayoría de ellos, son de corriente permanente debido a la abundantes d lluvias en la región durante todo el año, las cuales sobrepasan los 1000 mm anuales. (Figueredo, 2004):

Las principales arterias de la región desembocan en el Océano Atlántico, formando deltas cubiertos de sedimentos palustres y vegetación típica de manglar.

La mayor parte de estas reservas hídricas no se utilizan, existiendo sólo una presa de importancia a unos 10 km al sur de la ciudad de Moa (presa Nuevo Mundo) cuyas aguas se utilizan para el funcionamiento de las industrias del territorio.

I.7. Condiciones climáticas

La región de estudio se caracteriza por condiciones climáticas propias de un clima tropical lluvioso, muy húmedo y con precipitaciones mayores a los 1000 mm al año. La conjugación del relieve y su alineación entre el este y el noreste con la dirección de los vientos alisios procedentes del océano Atlántico, ocasionan que el aire cargado de humedad sea frenado por el sistema montañoso, originando las intensas precipitaciones que se producen en la mayor parte del año. La época de mayor volumen de las precipitaciones ocurre desde septiembre hasta marzo, coincidiendo con la temporada invernal y la de menor volumen desde abril hasta agosto que coincide con la primavera y el verano.

Anualmente ocurren precipitaciones en rangos de 1 400 a 2 000 mm con más de 60 a 70% de ocurrencia en los meses de lluvia. Normalmente el mes de mayores precipitaciones es noviembre. Como en todo el territorio de Cuba el área no está exenta de afectaciones por depresiones tropicales y grandes huracanes como El Flora donde se registraron hasta 72mm de lluvia en 1 hora.

Las variaciones de las temperaturas son pequeñas en sentido general, manifestándose temperaturas cálidas, próximas a los 28°C - 30°C, en los meses de verano, en cambio, las temperaturas mínimas se presentan en la temporada invernal, siendo enero y febrero los meses más fríos.

I.8. Recursos minerales

La región de Moa, constituye una de las zonas más ricas del país en lo que a recursos minerales se refiere y es el centro minero de mayor importancia en la nación. Los yacimientos lateríticos de níquel y cobalto, de tipo único por sus escalas, que se encuentran en la región, representan la mayor riqueza mineral del país y una de las mayores del mundo. Asimismo, unido a la corteza de intemperismo se localiza una de las reservas más importantes de mineral de hierro a escala mundial. Además vinculado a la misma se encuentran importantes reservas de espinelas cromíferas diseminadas que según estudios realizados los volúmenes sobrepasan las 4650 toneladas métricas por hectárea de lateritas, hasta una profundidad de 30 centímetros.

En la región de Moa se localizan los principales yacimientos de espinelas cromíferas del tipo refractario del país, en la actualidad se explotan los yacimientos "Merceditas" y "Amores". Se cuenta además con reservas de piedras ornamentales, decorativas, arcillas rojas y reservas considerables, aún no evaluadas, de caolinita en las cortezas desarrolladas sobre litologías máficas.

I.9. Grado de estudio de la región

Las cortezas de intemperismo comenzaron a considerarse como fuentes de Ni y Co al inicio de la década del 40 de este siglo, sin embargo, en la región de Moa, comenzaron a estudiarse con este objetivo a partir del año 1952. Entre 1955 y 1958 se realizó la exploración del yacimiento Moa (Zonas A, B, C, D y F) por compañías norteamericanas. Después del triunfo de la revolución se realizó la exploración y confirmación de las reservas calculadas por los norteamericanos por el ICRM (Instituto Cubano de Recursos Minerales) con la ayuda de geólogos soviéticos (1961-1962).

Con relación al desarrollo de la región de la industria del Ni para la búsqueda y exploración de las menas niquelíferas, surgió la necesidad de tener la base geológica.

Con el fin de confeccionarla, en 1962, fue realizado el levantamiento geológico a escala 1: 50 000, aunque la red de itinerarios era muy escasa y el levantamiento se realizó sin perforación y con volumen pequeño de trabajos mineros, el mapa geológico confeccionado sirve hasta ahora como la base geológica para todos los trabajos realizados en la región.

Entre 1962 y 1968 fueron explorados por personal geológico de la antigua Empresa Comandante Pedro Soto Alba y por el ICRM, los siguientes yacimientos: Área 11, Ampliación Área 11, Realengos, Yamanigüey y Atlantic.

Desde 1972 y hasta 1976 en todo el territorio de la antigua provincia oriental se llevó a cabo el levantamiento geológico a escala 1:250 000 por las Academias de Ciencias de Cuba y Hungría. Los materiales de estos trabajos fueron presentados en forma de mapas geológicos en planchetas a escala 1:100 000, memoria aclaratoria, mapa de ubicación de los minerales útiles a escala 1:250 000 y otros gráficos.

En la década del 70 al 80 y hasta el año 1994, fueron explorados por la Empresa Pedro Soto Alba los yacimientos: Atlantic, Zona Sur y Pronóstico. En el año 1995 se llevó a cabo por la PSA - Moa Níkel S.A. la exploración del grupo de yacimientos La Fangosa (Cupeyal y Montecristo) y entre los años 1996 y 1997 la misma Empresa realizó la exploración del yacimiento Piloto.

CAPITULO II. UBICACIÓN DEL YACIMIENTO MOA ORIENTAL, GEOLOGIA Y CARACTERIZACION DE LAS LATERITAS

II.1.Introducción

En este capítulo se presenta un resumen sobre los trabajos más importantes desarrollados en la región, dirigidos tanto a profundizar en el conocimiento geológico de la misma como a evaluar los potenciales económicos de sus reservas minerales. El objeto de estudio del mismo lo constituyen los rasgos fundamentales de las características geográficas y geológicas del área de estudio, las nociones generales sobre la determinación de dominios geológicos en yacimientos residuales de níquel y además, las cualidades geológicas, dinámicas e importancia económica de dichos yacimientos. En el desarrollo de este capítulo se describen las principales características geológicas de la asociación ofiolítica, por cuanto constituyen las litologías sobre las que se desarrollan los yacimientos lateríticos.

En el área que abarca el yacimiento Moa Oriental, se distinguen dos secuencias estratigráficas. Una corresponde al periodo cuaternario, a ella pertenecen las formaciones aluviales del río Moa, donde encontramos guijarros y lentes de arena de granos gruesos con una potencia muy pobre, lo cual carece de importancia.

La otra secuencia es la efusiva del cretácico inferior situada al nordeste, está representada por porfiritas, andesitas, rodeando esta formación encontramos las ultrabásicas serpentinizadas que ocupan casi toda el área, estando representada por las hazburgitas y en menor cantidad dunitas y piroxenitas.

Desde el punto de vista geomorfológico éste es un yacimiento que presenta ondulaciones suaves, coincidiendo esas características con la zona planificada para el año 2004.

Las zonas de pendientes más bruscas, de más rápido intercambio de las aguas (laderas y confluencias) se caracterizan por una reducción en el perfil litológico de intemperismo, dándose perfiles estructurales reducidos (sin serpentina) o inestructurales (ocres inestructurales con o sin perdigones).

Rocas intrusivas ultrabásicas: La corteza de intemperismo en el yacimiento Moa Oriental se ha desarrollado esencialmente sobre Serpentinitas - harzburgitas y harzburgitas fuertemente serpentinizadas. Estas rocas cubren prácticamente el 85% del área del yacimiento. Por sus características son generalmente estériles presentando colores verdosos con tonalidades grises, verde y negro. Localmente aparecen otras rocas pero de muy poco predominio en el basamento.

Corteza de intemperismo: Las cortezas de intemperismo presentan una potencia que varia desde 1 hasta 42 m teniendo como promedio 8.2 m, predominando las potencias entre 2 y 10m. Predomina la formación de una corteza de intemperismo ocrosa bien desarrollada con horizontes limoníticos bastante estables y con una variabilidad grande del horizonte serpentínico. La zona planificada se caracteriza por tener una amplia preponderancia del mineral limonítico sobre el serpentínico.

Del espesor total de la corteza de intemperismo las menas LB se encuentran en las litologías limoníticas (65% en los ocres estructurales y 25% en los ocres inestructurales sin perdigones), las menas SB se concentran fundamentalmente en los ocres estructurales (83%) las menas SD en las serpentinas lixiviadas y agrietadas (correspondientemente 42 y 55%) y las menas ferrosas fundamentalmente en las zonas de ocres inestructurales con concreciones ferruginosas perdigones 82%.

II.2. Consideraciones para el cálculo del níquel equivalente

Históricamente se ha utilizado un límite de cut-off de 1.0 % Ni como base fundamental para los estimados de recursos y reservas, lo cual ignora el contenido de cobalto incluido en dichos recursos. Con el objetivo de eliminar esta deficiencia y con la aprobación de la Oficina Nacional de Recursos Minerales se decidió realizar la estimación de recursos y reservas geológicas utilizando el concepto "níquel equivalente" que considera los contenidos de cobalto en los recursos y los precios del níquel y el cobalto. En la selección del cut-off de níquel equivalente también se ha tenido en cuenta que los contenidos promedios de Ni+Co no sean menores a los obtenidos para el cut-off de Ni = 1.0 %.

Los resultados de diferentes investigaciones han probado que debe ser utilizado un límite mínimo de Ni = 0.9 % para lograr que se cumpla la condición del párrafo anterior.

El níquel equivalente contenido en las reservas geológicas se ha definido por la siguiente expresión:

Niegui = %Ni + %Co*(Pco/Pni)

Donde:

Pni - Precio del Níquel;

Pco - Precio del Cobalto.

Las magnitudes de los precios de ambos elementos que se utilizarán en los cálculos se establecen luego de un análisis de su comportamiento en una etapa determinada y de la tendencia en el futuro, lógicamente también debe ser considerada el dinamismo de este parámetro que está sometido a la influencia de factores económicos, políticos y sociales en el ámbito universal.

II.3. Desarrollo geológico

El yacimiento se encuentra explorado y desarrollado en distintas redes de perforaciones, la de 33x33 m que se utilizó para calcular la potencia media de perforación así como los demás parámetros tales como: muestra a procesar, muestra para la sedimentación, también se pueden realizar estas redes de exploración mas cercanas determinar con mayor conocimiento sobre la distribución de la potencia del escombro y determinar con mayor precisión entre un pozo y otro el contacto estérilmineral, tratando de no empobrecer el mineral por consecuencia de dejar escombro sin extraer. Para estimar la calidad del mineral contenido en cada bloque se utilizó un modelo geológico realizado a partir de la información aportadas por las redes de exploración y explotación, se considera el valor promedio de los elementos útiles (Ni, Co y Fe) y los nocivos para toda la masa del bloque, se estimó una virtual de 3x3 m.

Este método conlleva a una reestimación de las reservas geológicas del yacimiento ya que pueden suceder que algunas capas de 1m de promedio de un bloque determinado se consideren mineral o estéril cuando por su contenido real pertenezca a las

categorías contrarias. Por ejemplo la última capa de 1m del bloque de níquel contiene más del uno por ciento y el promedio de Ni del bloque completo es menor que el uno por ciento, en este caso, el bloque completo se enviará a la escombrera),

II.4Estratigrafía

Las formaciones sedimentarias y vulcanógeno-sedimentarias tienen una propagación a nivel de área muy reducida (no más del 10% del territorio), entre las cuales se localizan las siguientes formaciones:

Cretácico inferior (K₁): Formación Santo Domingo, representada por relictos de diabasas, espilitas y oorfiritas basálticas.

Cretácico superior (K₂): Formación Picota (Maestrichtiano), formada por rocas terrígenas.

Cretácico Superior (K₂) - Paleoceno: Formación Mícara de edad Maestrichtiano - paleoceno, formada por areniscas tobáceas de granos medios y finos y aleurolitas tobáceas.

Eoceno (F₂): Formación San Ignacio, representada por rocas aleurolíticas arcillosas con inclusiones de calizas, areniscas carbonatadas y margas.

Depósitos Oligocénicos Miocénicos (F_3-N_1) no clasificados: Representados por calizas, conglomerados y areniscas.

Depósitos Cuaternarios: Los más antiguos representados por calizas (CO₃) coralinas. Al sur del territorio se han establecido pequeños arcos de rocas metamórficas, principalmente compuestas por esquistos micáceos.

II.5.Tectónica

El yacimiento Moa Oriental se encuentra bajo la influencia de una gran falla que sigue la dirección del río Moa, a partir de ella se desarrolla otra estructura que sigue la dirección del arroyo Los Lirios, ambas constituyen los límites del yacimiento por el oeste y el este respectivamente y a partir de estas se desarrollan pequeñas fracturas en todas las áreas que siguen la dirección de cañadas y arroyos como el de la Veguita.

En la génesis de este yacimiento representan un papel importante los fenómenos tectónicos porque para la desintegración y posterior lixiviación de la roca madre es necesaria una red de grietas que permitan que el agua y los demás agentes de intemperismos puedan actuar sobre ellas, en la formación del yacimiento Moa es evidente que estos fenómenos estuvieron presentes, porque aunque existe un predominio de los perfiles incompletos, se encuentran zonas donde es imposible observar el corte completo, lo que corrobora que para que este se formara los fenómenos tectónicos tuvieron que influir.

II.6. Características hidrogeológicas

El yacimiento niquelífero Moa Oriental se encuentra situado en el complejo ofiolitico donde predominan las variedades de serpentinas, harzburguitas fuertemente serpentinizadas, existiendo en porciones reducidas serpentinitas crisotílicas y zona de intensa carbonatización de las serpentinitas. Sobre yaciendo a todas estas variedades litológicas se encuentra la corteza de intemperismo laterítica que varía desde 1 hasta 42 m, predominando los espesores de 2 hasta 10 m.

La corteza de intemperismo está constituida por ocres estructurales finales e iniciales, así como por ocres inestructurales con y sin perdigones de hierro de diferentes tamaños.

En este yacimiento se desarrolla el complejo acuífero de los horizontes litológicos presentes en la corteza laterítica, la que es infrayacida por las rocas fracturadas del complejo ofiolítico. La laterita está constituida por los ocres Inestructurales con y sin perdigones, así como los ocres estructurales.

Según los estudios hidrogeológicos que se han realizado para la explotación del yacimiento Moa Oriental se pudo apreciar que el agua se encuentra presente en los Ocres estructurales, en el contacto de este con las rocas ofiolíticas y en éstas, y que los ocres inestructurales constituyen la zona de aireación las cuales se inundan en épocas de lluvias y descargan sus aguas muy rápidamente.

Durante el estudio del comportamiento del nivel en el tiempo según el informe de exploración orientativa y detallada del yacimiento Moa Oriental del año 1992, se pudo

apreciar que los niveles en un mismo pozo oscilaban en el año con diferencia de 5 a 6 metros, lo que estaba relacionado con los períodos estacionales.

Haciendo un análisis de las propiedades acuíferas de las aguas podemos definir zonas de alta acuosidad, dadas por su gasto específico con valores mayores de 216 metros cúbicos por días.

Las cotas del nivel del agua en la parte Sur del yacimiento oscilan entre 300m y 260m, siendo las cotas del nivel del terreno de 350 a 250m. En la parte central del yacimiento las cotas del nivel del agua están entre 220m y 140m aproximadamente, y en la parte más baja del yacimiento las cotas del nivel del agua entre 60 a 0 m, mientras que las cotas del terreno están entre 150 y 50 m.

II.7.Interpretación sobre la génesis

Moa Oriental es por naturaleza un yacimiento de meteorización su génesis puede interpretarse como la destrucción y posterior transformación de las rocas del basamento o substrato, en general por la acción de la energía de los agentes atmosféricos, hídricos y biogénicos los que dieron lugar al surgimiento de nuevas rocas con textura, estructura, composición mineral y química propias.

No existen perfiles complejos, no son considerables las cortezas redepositadas lo que evidencia un origen aluvial del yacimiento.

II.8. Grado de desarrollo de la corteza de intemperismo

La corteza de los yacimientos lateríticos del norte de Holguín, presentan cuatro zonas principales que pueden ser descrita macroscópicamente debido a la variación de color y la textura de la corteza, coincidiendo con la variación del contenido de níquel en ella. Estas son:

II.8.1.Primera zona o zona superior. Representa una coloración marrón oscuro, con abundantes concreciones con óxidos e hidróxido de hierro, que frecuentemente se hallan cementado entre sí por una materia ferruginosa de similar composición al de las concreciones, tienen una potencia variable, es la vía de entrada del agua de filtración,

así como la zona de evaporación por lo que está sujeta al movimiento ascendente de las soluciones mineralizadas.

En la parte inferior, las concreciones se hacen más pequeñas y menos numerosas, predominando el material terroso de composición similar.

II.8.2.Segunda zona. Sigue a la anterior en la profundidad, está formada por materiales de carácter terroso con alta humedad, predominando la coloración amarilla, su potencia es variable.

II.8.3.Tercera zona. Formada por serpentinas descompuestas, su coloración y consistencia varía con relación al grado de alteración, dentro de la serpentina se presentan grietas y bolsones con materiales lateríticos. Su potencia es aún más irregular que las anteriores, transiciona a las serpentinas duras y compactadas de las que derivaran. En ellas se encuentran numerosas grietas, rellenas con silicatos de magnesio hidratado de color blancuzco y verdoso.

II.8.4.Cuarta zona. Aquí se ubica la roca madre y compacta extendiéndose en profundidad hasta niveles indeterminados.

La erosión del río Moa expone corte de más de 200m de espesor, otros cortes similares se observan en el cause del río Levisa.

II.9.Corte típico

El área del yacimiento está compuesta por las peridotitas serpentinizadas en la superficie de las cuales está ampliamente desarrollada la corteza de intemperismo laterítico. Las ultrabásicas son las rocas madres de dicha corteza, se encuentran separadas en grandes bloques por un sistema de fallas tectónicas, estas rocas a causa de su diferenciación tectónica vertical se han encontrado en diferentes condiciones geomorfológicas e hidrogeológicas. A causa de esto, la estructura del perfil de la corteza de intemperismo por la horizontal varía de un bloque a otro.

Tipos de mena

Menas lateríticas de balance (LB): Pueden aparecer con alto contenido de MgO y SiO₂, son generalmente ricas en Fe, Ni y Co.

Menas serpentiníticas de balance (SB): Son menas donde el níquel posee los más altos contenidos. El silicio y el magnesio en Moa Oriental puede alcanzar valores máximos de 36 y 26% respectivamente.

Menas lateríticas fuera de balance (LF): En comparación con la mena LB, los elementos nocivos MgO y SiO₂ tienen una concentración discretamente menor, la de Al es algo mayor y tiene un alto contenido de Co. Es la de mayor contenido de Fe₂O₃.

Menas ferrosas de balance (FB): Son menas ferrosas que se acompañan de un alto contenido de Al y SiO₂, aunque esta última se encuentra en menor cantidad que los otros tipos de menas.

Rocas estériles (RE): Tienen bajo contenidos de Ni, Fe y Co y altos de MgO y SiO₂.

II.10.Características físico - mecánicas de las rocas

El alto grado de intemperización que presenta la roca dificulta la determinación del agrietamiento. En el contacto de la corteza de intemperismo y el basamento, se presenta una faja discontinua muy alterada con características friables y deleznables, a medida que se profundiza aparece la roca fresca pero agrietada, las que desde el punto de vista ingeniero - geológico presentan una buena estabilidad por su dureza y solidez.

En los horizontes limoníticos se producen fenómenos físico - geológicos muy diferentes a los ocurridos en el basamento, desfavorables al proceso de explotación, entre los que encontramos deslizamientos, derrumbes, etc. Estos fenómenos que ocurren en las lateritas indican que durante la explotación es necesario tomar una serie de medidas que garanticen la estabilidad del mineral útil.

Es característico que el peso volumétrico varíe significativamente por tipo litológico, lo cual determina que un mismo tipo de mena al no estar condicionada por tipo litológico, pueda tener diferente peso en dependencia de la zona, sin embargo, para los cálculos es comúnmente usado un solo valor de peso volumétrico para cada mena de cada yacimiento o sector. La humedad varia en dependencia de la profundidad, encontrándose los valores más altos en el material serpentínico. En yacimiento el coeficiente de esponjamiento obtenido en el escombro difiere al de las menas que

componen el mineral útil, así no ocurre en la densidad y humedad que tienen de iguales valores (ver. tabla 2.1).

Tabla 2.1. Algunas propiedades y coeficiente del mineral y estéril.

	Densidad (t/m^3) .	Coeficiente de esponjamiento	Humedad (%)
Mineral	1,05	1,35	36
Estéril	1,05	1,37	36

II.11.Características de las rocas del substrato

Las litologías a partir de las cuales se formaron las potentes cortezas de intemperismo que hoy constituyen los yacimientos lateríticos de hierro, níquel y cobalto de la región de Moa están constituidas fundamentalmente por peridotitas serpentinizadas, dunitas y piroxenitas.

Macroscópicamente son rocas densas y masivas de granos finos y generalmente agrietadas en diferentes grados. El color de la roca fresca es de gris verdoso a gris oscuro, en ocasiones hasta negro. La masa volumétrica de estas rocas oscila entre 2,41 y 2,58 g/cm³. Bajo el microscopio es común observar una textura de enrejado, con finas vetillas de serpentina en los centros de cuyas mallas se encuentran núcleos de olivino y piroxenos.

En la composición mineral aparecen los minerales del grupo de la serpentina (crisotilo, lizardita, antigorita, etc.) cuyo contenido comúnmente alcanza el 60 %. Los minerales primarios a veces representan el 5-30 %, en casos raros pueden alcanzar hasta 50 %. En pequeñas cantidades aparecen en su composición cromoespinelas y magnetita en forma de granos independientes y pequeños agregados.

El agrietamiento es una regularidad textural de las litologías ultramáficas del complejo ofiolítico, que contribuyó de forma importante a los procesos de serpentinización y laterización de las ultramafitas, originando las cortezas lateríticas ferroniquelíferas.

II.12.Parámetros geomorfológicos

Se caracteriza por tener relieve suave y ondulado, y gradualmente ascendente de norte a sur desde los 50m de elevación sobre el nivel de mar hasta aproximadamente 300m. Hacia el oeste la topografía disminuye bruscamente hasta cerca del río Moa, mientras que el límite hacia el este se caracteriza por tener pendientes más suaves dirigidas hacia el río Los Lirios. Internamente la zona se encuentra formada por diferentes elevaciones y crestas divididas por quebradas que drena hacia el río Moa.

II.13.Propiedades de los suelos

El área del yacimiento de Moa Oriental ocupa una gran parte de las premontañas escalonadas septentrionales de la Altiplanicie del Alto de la Calinga, caracterizada, desde el punto de vista edafológico, por el predominio de los suelos del agrupamiento ferríticos.

Estos suelos han sido redefinidos recientemente como ferríticos rojos oscuros en la nueva versión de Clasificación Genética de los suelos de Cuba: Resolución Ministerial PCN No.42/95.

Desde el punto de vista de su potencial agrícola, puede decirse que estos suelos poseen un lavado intenso de las bases alcalinos-térreas y una baja fertilidad natural. Por otra parte, la cantidad excesiva de Fe_2O_3 bloquea casi todos los elementos básicos para la alimentación de las plantas, principalmente la asimilación del P_2O_5 .

El área del yacimiento de Moa Oriental está caracterizada por la existencia de una cobertura edáfica ferrítica lixiviada típica, sobre los restos de las superficies de planación premontañosas, y por la presencia de los suelos poco evolucionados, esqueléticos naturales, en las laderas y pendientes más abruptas.

En términos generales, los perfiles típicos de los suelos ferríticos del yacimiento poseen las características enunciadas en la Tabla 2.2.

Los suelos ferríticos distribuidos en el área del yacimiento de Moa Oriental, se caracteriza por la presencia en ellos, del horizonte de diagnóstico subsuperficial Férrico

(horizonte B Férrico; endopedón oxídico en la Séptima Aproximación Norteamericana), el cual posee las siguientes características físico –químicas:

Presencia de nódulos ferroginosos que representan menos del 20% del volumen de la masa del suelo.

- Tiene más de 50% de sesquióxidos de hierro.
- Capacidad de intercambio menor de 12 cmol(+)Kg⁻¹ en arcilla.
- La composición de minerales secundarios está representada por hematita, goetita, gibbsita y trazas de minerales arcillosos 1:1.
- Grado de saturación por bases mayor de 50%.
- Valores cercanos del pH en agua y en cloruro de potasio.
- Estructuras de agregados finos, poco estables.

Tabla 2.2. Descripción general del perfil del suelo ferrítico.

Horizonte.	Prof. (cm).	Descripción del perfil
A	0-10	Poco sistema radicular, capa vegetal (A ₀ - A ₀₀) muy delgadas (1mm), constituida fundamentalmente de acículas de pino, la estructura de los agregados es granular, estable, sin perdigones, la textura es franca arenosa, color rojo oscuro, con Hue 2,5 YR ¾(entiéndase value =3, chrona =4), no es pegajoso al tacto, no se observan canales de lombrices, no hay caracoles, ni otras macroformas de vida.
B ₁	10-30	Muy poco sistema radicular, la estructura es poliédrica pequeña, poco estable, abundantes perdigones ferromangánicos (más del 5%) textura franca arcillosa, el color es rojo oscuro, con Hue 2,5 YR 3/6, no es pegajoso al tacto, sin canales de lombrices.
B ₂	Más de 30	No tiene sistema radicular, la estructura es granular, estable textura franca arcillosa, menor contenido de perdigones ferromangánicos, ec elc color similar al B ₁ , sin canales de lombrices.

Como se aprecia, estos suelos poseen una muy baja capacidad de bases cambiables (CCB), lo que se traduce en una también muy baja fertilidad natural. El pH en agua es ligeramente ácido, aspectos este de importancia en cuanto a las medidas a tomar para la rehabilitación (ver Tabla 2.3).

Tabla 2.3. Indicadores ambientales claves promedios de 112 muestras de suelos ferríticos tomadas en profundidades hasta de 15 metros.

SiO ₂	Al ₂ O ₃ %	Fe ₂ O ₃	Ni,Cr,Co %	Coloides %	PH en H₂O	CCB Mq/100g
3.6	11.9	64.9	1.1	55-70	6.1	menor de 3

En las áreas de pendientes inclinadas del yacimiento, se distribuyen los suelos Esqueléticos (poco evolucionados), los cuales presentan, en general el perfil que se expone en la tabla 2.4.

Tabla 2.4. Descripción general del perfil del suelo Esqueléticos.

Horizonte	Prof (cm)	Descripción del perfil.
A	0-5	Abundante sistema radicular, capa vegetal (Ao-Aoo) espesa (mayor que 3 cm) constituida fundamentalmente de hojas descompuestas y semidescompuestas del charrasco y de gramíneas, estructura es arcillosa, color pardo amarillento oscuro, con hue 10 YR ¾, no es pegajoso al tacto, no se observan canales de lombrices, no hay caracoles, tiene algunos fragmentos de serpentinas.
AC	5-20	Poco sistema radicular, sin estructura de los agregados, textura arcillosa, color igual que en A, no es pegajoso al tacto, tiene abundantes fragmentos de serpentinas.

Se trata de los suelos de perfil ACD o AD, poco profundos (menos de 20 cm) con alto contenido de gravas y fragmentos de la roca madre en superficie, donde hay poca alteración de los minerales primarios.

Estos suelos aparecen en niveles fuertes de pendientes (15° a 35°), rodeando las superficies interfluviales de los ríos Moa, Jicotea y Los Lirios, entre los 150 y 400 m de altitud.

En general los lithosoles sobre las rocas ultrabásicas son suelos algo fértiles, con alta saturación por bases (mayor de 50 %) y alto contenido de materia orgánica(5.0%), moderada disponibilidad de Nitrógeno total (0.026%) etc; sin embargo, son suelos muy poco productivos, debido fundamentalmente a la manifestación extrema de algunos factores limitantes para los cultivos agrícolas , tales como la poca profundidad efectiva y pedológica, rocosidad, pedregosidad , intensa erosión y muy baja disponibilidad de fósforo y potasio.

CAPITULO III. ANALISIS DEL METODO DE EXPLOTACION EMPLEADO EN LA MINA PEDRO SOTO ALBA

III.1.Caracterización de la minería

El yacimiento Moa Oriental entró en explotación el día primero de octubre del año 2000, un mes antes habían comenzado los trabajos de destape. Moa Oriental se caracteriza por tener un relieve suave y ondulado, y gradualmente ascendente de norte a sur. Hacia el oeste la topografía disminuye bruscamente hasta cerca del río Moa, mientras que el límite hacia el este se caracteriza por tener pendientes más suaves dirigidas hacia el río Los Lirios. Internamente la zona se encuentra formada por diferentes elevaciones y crestas divididas por quebradas.

Por razones climáticas generalmente predominan dos afectaciones fundamentales: la generación de polvo en los períodos secos y la obstrucción de las vías y zonas minadas en los períodos de intensas lluvias, así como el embalse de las aguas en las zonas de minería, pero ello no constituye un peligro inminente para garantizar la producción ni la seguridad de operación.

Ocasionalmente ocurren fenómenos de deslizamientos y derrumbes, típicos de las rocas lateríticas y que están asociados a sus características friables. La solución de esos problemas se garantiza con el diseño de proyectos con mayor calidad y al desarrollo de las labores mineras tomando una serie de medidas que garantizan la ejecución segura de los trabajos.

III.2.Desarrollo geológico

El yacimiento se encuentra explorado y desarrollado en distintas redes de perforaciones, la de 33x33m, que se empleó para la calcular la potencia media de perforación. Además fue necesario la aplicación de una red complementaria de 16x16m, con el propósito de obtener datos más representativos.

Para realizar la explotación del yacimiento por bancos se debieron estimar que el agotamiento del mineral no se hará mediante pozos de red de exploración como se hace con el método tradicional, sino por bloques elementales que conforman el banco.

Para realizar la estimación de la calidad del mineral contenido en cada bloque se empleó un modelo geológico surgido a raíz de la información aportada por las redes de exploración y explotación, se considera el valor promedio de los elementos útiles y los nocivos para toda la masa del cuerpo, estimándose una red virtual de 3x3m.

Este método conlleva una reestimación de las reservas geológicas del yacimiento ya que el volumen elemental de mineral pasó e una capa de 1 metro de profundidad a un bloque de 3 metros de potencia y 8x8m. De superficie (192 metros cuadrados). En este caso se promedia el contenido de cada pozo de la red virtual de 3x3m, dentro del bloque elemental de 8x8x3m, y el resultado se utiliza para evaluar sí se considera mineral o estéril, pudiendo suceder que una capa determinada con valores inferiores al cut-off establecido sea considerado útil, debido al contenido superior de las capas contiguas.

Otro novedoso aspecto en el desarrollo geológico es la incorporación del concepto de níquel equivalente, para establecer el cut-off mínimo, así se consideran los contenidos de níquel y cobalto en la mena laterítica, al igual que los precios en el mercado mundial de los metales.

III.3. Sistema de explotación por bancos (con retroexcavadoras)

El desarrollo de la minería se hará en frentes continuos a través de bancos múltiples paralelos y por la horizontal, con la utilización de medio de transporte, y escombreras interiores. La apertura de nuevos frentes se efectuará a través de trincheras longitudinales interiores o exteriores. Este sistema se empleó por primera vez en Moa Oriental, y además, actualmente, se usa en el yacimiento Zona A.

La explotación del yacimiento Moa Oriental se realiza a través de un sistema de bancos múltiples donde los frentes de excavación se desplazan de este a oeste (o viceversa) y los frentes de trabajo se desplazan de norte a sur.

Para la excavación de mineral laterítico se utilizan retroexcavadoras LIEBHERR 984 y para el traslado del mineral se utilizan camiones articulados VOLVO A40D.

El parámetro básico del sistema de explotación utilizado es la altura del banco, para su establecimiento se consideran las propiedades físico-mecánicas y las características del equipamiento minero.

Luego de analizar detalladamente los aspectos mencionados se estableció la altura de los bancos igual a 3 m y las dimensiones de los bloques elementales para el establecimiento de las reservas 8*8*3, es decir la explotación de los bancos se realizará a través de bloque de 192 m³ en los bancos intermedios, los bancos superficiales dependen del relieve de la superficie.

Considerando el alto grado de dinamismo de los bancos de trabajos se decidió establecer 90⁰ de talud, no así en los límites de la explotación donde la permanencia del banco es por tiempo indefinido y se formó como talud de 75⁰.

Para la explotación de las primeras fases de minería, se previó a ejecución de un escombrera ubicada en una zona de afloramiento de serpentinas y poco volumen de mineral limonítico de baja calidad, aquí se confrontó la dificultad de no contarse con un área previamente minada para su ubicación.

Tanto para la zona de minería como para la escombrera se diseñó un programa de control de la erosión y sedimentos que prevé la ejecución de canales de desvíos y de colección y piscinas de sedimentación en el perímetro de las zonas afectadas por la minería.

Para la conservación del suelo vegetal se diseñó un depósito con capacidad de admisión de alrededor de 400 000m³ contemplado también dentro del programa de control de erosión y sedimentación.

A partir de la fase 2 de minería (año 2002) se diseñó una escombrera en la zona minada de la fase 1 que se utiliza en la actualidad para la deposición selectiva del escombro, en el sector oeste se ubica el material con contenido de níquel equivalente entre 1 y 1.25 y en el sector este el escombro normal formado por concreciones ferruginosas.

Los horizontes de una zona pueden no coincidir con los de otra, ya que pueden ser determinados a partir de modelos de bloque diferentes, aunque dentro de un mismo yacimiento es aconsejable comenzar el rompimiento de los bancos partiendo de un mismo horizonte.

III.4.Parámetros fundamentales de explotación

Altura de banco - La altura de los bancos va a ser siempre constante, de 3 metros, tanto para el escombreo como para la extracción. Su determinación estuvo basada en los siguientes parámetros:

- Altura del camión a utilizar (VOLVO) 3 metros.
- Visibilidad apropiada para el operador de la retroexcavadora por la altura del camión.
- Mayor estabilidad del talud.
- Menor pérdida y empobrecimiento en los contactos entre menas.

Talud del banco de trabajo - El talud por su pequeña altura y gran dinamismo tendrá una inclinación generalmente superior a los 85°.

Plataforma de trabajo - Al realizar la carga desde el banco superior, el ancho mínimo de la plataforma de trabajo será de 12 metros, si la carga se realiza al mismo nivel de ubicación de la retroexcavadora y el camión tiene que retornar a la misma vía para regresar, el ancho mínimo admisible será de 16 metros.

Fig. 1 Retroexcavadora en el frente de trabajo.

III.5. Fases de minería

Para la explotación de yacimientos es necesario realizar una serie de operaciones en un orden lógico, estas son:

1. Desbroce.

Incluye la tala de árboles por la forestal y la remoción de la capa de suelo vegetal (25 a 40 cm de espesor). Este material será removido por un bulldózer, se transportará para los depósitos temporales de cada yacimiento el cual se utilizará posteriormente en la rehabilitación de las áreas minadas. Al ejecutarse esta operación los arbustos pequeños se depositan conjuntamente con el material removido. En Moa Oriental se utilizará el depósito existente.

2. Escombreo.

Durante el desarrollo de esta actividad se removerá un total de 850 mil m³ de escombro, esta labor se realizará con el mismo equipamiento de extracción. Se removerá de forma similar a como se realiza la extracción de minerales (por bancos y plataformas de la misma dirección).

3. Construcción y mantenimiento de caminos.

La construcción de caminos es una labor que requiere especial cuidado, desde la proyección hasta la construcción propiamente dicha, pues lo mismo deben cumplir con una serie de requisitos que son indispensable para que el transporte del mineral se realice con seguridad y economía.

Esta actividad se realiza por la brigada de apoyo a la minería con el equipamiento necesario. Las características y dimensiones de los caminos para el transporte de mineral son:

- Doble vía de circulación.
- Ancho máximo de 14m (sumando los paseos o berma de seguridad lateral), pendientes máximas de 8%.

 Recubrimiento con escombro o rocoso si son caminos principales o secundarios no ubicados sobre la minería.

El diseño de los caminos se realiza en el Grupo de Planificación e Ingeniería, apoyándose en el software CARTOMAP. Debemos destacar que en nuestra zona de trabajo no se realizaran caminos, puesto que la misma se encuentra dividida por un camino que conduce hacia el área 18 donde se está realizando la minería.

4. Extracción y transporte.

Moa Oriental – Con respecto a la minería del año 2002 el volumen de minado se reduce a un 64%, minará en todos los trimestres un total de 1.68 millones de toneladas de mineral (49%) y alimentará directamente más del 43%. Su minería la realizará con 2 retroexcavadoras LIEBHERR 984 y 15 camiones articulados VOLVO A40D, estas dos excavadoras trabajaran a tiempo completo en los primeros días en el escombreo, luego una de estas retroexcavadoras pasara a la fase de la minería y trabajaran de forma simultánea.

5-Conformación de escombreras.

Las escombreras de Moa Oriental (incluyendo las del escombro selectivo) se seguirán ejecutando por el proyecto de la firma de consultoría Knight Piésold. La conformación de las escombreras tiene los siguientes parámetros fundamentales:

- Altura de banco o capa de 3m.
- Talud con pendiente 2:1.
- Bermas de 4m entre el borde superior de cada capa y el pie de la capa superior con una pendiente hacia el interior de 0.5 %.
- Rehabilitación.

Las operaciones mineras se ejecutarán en áreas individuales según se vayan agotando, en ellas se irá depositando el escombro procedente del destape de otras áreas. Posteriormente se proseguirá con el recubrimiento con la capa vegetal y la reforestación. Este yacimiento posee un volumen importante de recursos de (alrededor de 490000 t).

III.6. Equipamiento minero

Desbroce

Para sacar la capa vegetal es necesario utilizar el bulldozer KOMATSU 56 D125 E-2, este equipo, es muy productivo en cualquier régimen de trabajo ya que tiene la posibilidad de moverse por esteras lo que lo hace mucho más efectivo. Hay que destacar que en esta área no se realizara la labor de desbroce, puesto de que ya había sido desbrozada. Sus dimensiones y la de sus elementos de trabajo.

Largo:6060 mm

Ancho: 3500 mm

• Potencia: 225 HP/2000 r.p.m

Largo de la cuchilla: 4365 mm

Alto de la cuchilla: 1210 mm.

6. Destape y arranque:

El destape y arranque se realizan con retroexcavadoras LIEBHERR 984 Y bulldozer KOMATSU 56 D125 E-2 para operaciones auxiliares.

La retroexcavadoras LIEBHERR 984 tiene los siguientes parámetros:

- Volumen del cubo, $V_c = 6m^3$.
- Duración del ciclo de trabajo, $T_c = 40seg$.
- Longitud de la pluma, $L_p = 8000mm$.
- Ancho del cubo, $A_c = 2600mm$.
- Alcance máximo durante el ataque, 5m.
- Aprovechamiento de la jornada laboral, $K_{ui} = 0.82$
- Utilización del parque, $K_{uv} = 1$.
- Coeficiente de llenado, $K_{II} = 0.95$.
- Disponibilidad del equipamiento, D = 0.9.
- Transporte automotor:

El mineral es transportado a través de los camiones articulados VOLVO BM A40D. Se eligió estos camiones debido a las grandes ventajas que han demostrado durante la

explotación de otros sectores de este yacimiento lo cual a pesar de lo difíciles factores minero técnicos y geólogo minero. Sus características técnicas son:

• Capacidad de carga: 37t.

Volumen de la caja: 22.5m³.

Tracción: 6x6

Potencia del motor: 228Kw (306HP).

Ángulo de basculación de la caja: 73⁰

Tara: 25000Kg.

• Coeficiente de tara: 0.8

III.7.Medidas de seguridad para el trabajo con retroexcavadoras

- Cuando la excavadora está en operaciones, se prohíbe la presencia de personas en el radio o sector de influencia de la misma.
- La excavadora debe estar provista de señalización sonora de manera que indique el inicio y fin de cada operación a realizar.
- Durante el movimiento en pendiente deben contemplarse aquellas medidas que impidan su corrimiento.
- El movimiento de la excavadora debe hacerse a la señal del jefe de turno o de brigada.
- Durante el movimiento debe garantizarse el contacto visual o por radio comunicación entre el operador y el que dirige el movimiento.
- Las excavadoras deben trabajar sobre plataformas aplanadas y compactas y los cables de acero que se utilicen en el alza, el arrastre y la guarnición deben corresponderse con los del pasaporte del equipo y revisarse no menos de una vez por semana, y la cantidad de hilos rotos no debe ser mayor del 15% del total de hilo.

III.8. Medidas de seguridad para el trabajo con transporte automotor

- La planta y perfil de los caminos deben corresponder a las reglas y normas de construcción vigentes.
- El ancho de la parte transitable del camino se establece partiendo de las dimensiones del equipo de manera que haya una holgura no menor de 1.5 m entre los automóviles que circulen al encuentro y una distancia no menor de 0.5 m de las ruedas exteriores hasta el borde de la parte transitable del camino.
- No se permite transportar personas fuera de la cabina.
- No se permite adelantar a otro vehículo que circule en el mismo sentido.

III.9.Medidas de seguridad para el trabajo con bulldózeres

- Se permite el trabajo en el radio de acción de la excavadora, sólo cuando la misma haya sido convenientemente posicionada y el cubo esté apoyado en el suelo.
- Cuando se realice la reparación debajo de la cuchilla, esta debe estar convenientemente calzada.
- Al ejecutarse cualquier tipo de trabajo, las pendientes de los accesos e inclinación transversal no debe sobrepasar los valores máximos señalados por el fabricante.
- Al empujar el material en las escombreras o depósitos de mineral el equipo no debe sacar la cuchilla fuera del borde del terraplén.
- Al moverse en dirección paralela al borde de la escombrera o depósito de mineral la distancia entre la estera y el borde del terraplén no debe ser menor de 2m.
- Los bancos y terrazas creadas por el bulldozer en las laderas, deben tener una pendiente transversal de 1º a 3º hacia el lado opuesto del borde superior del talud.

III.10.Protección personal

Es necesario acondicionar al obrero con medios individuales que los protejan de accidentes relacionados con su desplazamiento, equipos y sustancias dañinas. En la Tabla 1 del Anexo, donde se relacionan las partes del obrero que se deben proteger, así como los medios de protección y los requisitos básicos de estos medios.

- Al empujar el material en las escombreras o depósitos de mineral el equipo no debe sacar la cuchilla fuera del borde del terraplén.
- Al moverse en dirección paralela al borde de la escombrera o depósito de mineral la distancia entre la estera y el borde del terraplén no debe ser menor de 2m.
- Los bancos y terrazas creadas por el bulldózer en las laderas, deben tener una pendiente transversal de 1º a 3º hacia el lado opuesto del borde superior del talud.

CAPÍTULO IV. DISEÑO DEL SISTEMA DE EXPLOTACIÓN DEL SECTOR 14

IV.1.Introducción

La decisión sobre el establecimiento del sistema de explotación que se aplicará en un yacimiento es un aspecto que debe considerar disímiles factores, tanto naturales como técnicos y económicos. En nuestro caso la tarea se simplifica hasta niveles mínimos debido a que el objetivo es diseñar el Sistema de Explotación previamente establecido de un sector del yacimiento Moa Oriental, partiendo de una seria de premisas importantes relacionadas con los aspectos mencionados.

La Subdirección de Minas de la empresa Pedro Soto Alba desde hace varios años implementó el sistema de explotación por bancos que se aplica en todos los frentes de minería utilizando retroexcavadoras y camiones articulados. El objetivo de nuestro trabajo como ya se planteo anteriormente consiste en realizar de la forma mas racional el diseño del sistema de explotación del Sector 14 del yacimiento Moa Oriental.

El diseño de una mina posee múltiples objetivos para el cumplimiento de los cuales se deben realizar disímiles tareas, entre las que se destacan; la selección del sistema de explotación, el diseño geométrico de la mina, la determinación del ritmo anual de producción, establecimiento de la ley de corte, etc. Actualmente, como la inversión del capital que se necesita para abrir una nueva mina o para cambiar el sistema de explotación existente es muy elevada y las influencias de estos sobre el costo de extracción es importante, es menester que dicho proceso de selección responda a un análisis sistemático y global de todos los parámetros especificos del yacimiento: geometría y propiedades geo-mecánicas del cuerpo mineral y rocas de caja, distribución de leyes, factores económicos, limitaciones ambientales, condiciones sociales, entre otros.

La diversidad de estos parámetros y las dificultades de su cuantificación total, ha impedido el desarrollo de reglas rígidas y esquemas precisos de análisis aplicables en cada yacimiento en particular. No obstante los avances logrados en algunas ramas de la ciencia en los últimos años que han permitido establecer métodos generales de

explotación y procesos numéricos de selección válidos durante la etapa de viabilidad de

un proyecto.

Para diseñar la explotación del Sector 14 del yacimiento Moa Oriental que formará parte

de la minería desarrollada en la empresa Moa Nickel S.A. en un futuro inmediato se

empleará la técnica minera existente en dicha empresa, vale destacar que la flota de

equipos seleccionados está constituida por equipamiento pesado de vanguardia a nivel

mundial y de acuerdo a la experiencia obtenida en otras fases del mismo yacimiento, ha

mostrado una alta eficiencia y compatibilidad con las condiciones minero-geológicas y

ambientales.

IV.2. Caracterización del Sector 14 del yacimiento Moa Oriental

El sector objeto de estudio se encuentra ubicado en la parte norte del yacimiento Moa

oriental como se muestra en la figura 6 del anexo.

Según las coordenadas locales empleadas en la empresa, la región de trabajo se

encuentra situada entre los siguientes puntos:

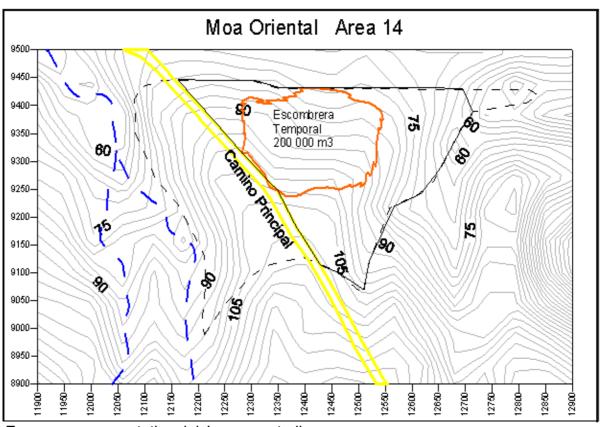
Norte: 9000 - 9400

Este: 121000 - 127000

La potencia del mineral es de 5 m. Aproximadamente. Una particularidad de este

sector que atenta seriamente contra la racionalidad de la explotación es la ubicación de

una escombrera temporal con un volumen de 200 000 m³ de escombro que debe ser


removida al lugar de su ubicación definitiva con el gasto complementario que ello

implica.

Este gasto se calculará separadamente en este trabajo, aquí podremos observar la

ubicación de la zona de trabajo.

35

Esquema representativo del área en estudio

IV.3. Estimación de reservas

La base de datos de la empresa Pedro Soto Alba históricamente la ha aportado la empresa Geominera de Oriente a partir de la exploración de los yacimientos lateríticos desde la década del 60 al inicio de su explotación, fundamentalmente de la red de 100 x 100 m y 33 x 33 m. En los últimos tiempos se han incorporado a las bases de datos los resultados analíticos de todas las perforaciones complementarias que se realizan, tales como las de investigación en red irregular o las de confirmación en red de 66 x 66 m ó 33 x 33 desplazada, así como las de explotación en red de 16 x 16 m.

Los recursos se estimaron mediante el Sistema Integral Minero (SIM), desarrollado en la Subdirección de Minas pero utilizando el método de bloques (ver Tabla 2) del anexo. Las dimensiones de los bloques son de 8 x 8 x 3 m y obedecen a criterios técnicos relacionados con el perfil geológico del yacimiento y las propiedades físico-mecánicas del mineral, así como los parámetros fundamentales del equipamiento minero.

El procedimiento para la estimación de las reservas del yacimiento se realizó a través del SIM según el modelo de bloque, dentro de las cuales se incluyen, las franjas de protección medioambientales y restricciones por líneas eléctricas.

El resultado de esta estimación en el área 14 se muestra en las tablas 2 y 3 del anexo, donde se muestran los resultados de las reservas y los contenidos de los elementos nocivos por bancos respectivamente.

La relación escombro mineral en el sector 14 presenta una situación diferente al comportamiento de las áreas explotadas hasta el momento, por ese motivo la planificación de la minería en el sector de estudio se realizará en condiciones de explotación que no son similares a la que existen en los otros yacimientos.

Para obtener las primera 13 376 t de mineral listo para la extracción se deberá mover un volumen de escombro de aproximadamente 147 000 m³, es decir se deben extraer totalmente los bancos 96, 97, 98, 99, 100, 101. Ver tabla 2 del anexo.

Considerando la productividad del equipamiento minero, se puede realizar el escombreo de los primeros 6 bancos utilizando dos excavadoras y 5 camiones articulados per cápita en un plazo de 8 días; si se utiliza un solo equipo de carga entonces el plazo se extiende hasta 16 días. Además se debe remanipular un volumen de alrededor de 200 000 m³ ubicados en la escombrera temporal en un plazo de 11 ó 22 días en dependencia de la cantidad de equipos de carga disponibles. Es decir, en dependencia de la disponibilidad de equipos de carga, el plazo para tener preparadas las reservas de mineral en el área 14 oscila entre 19 y 38 días.

La eliminación del escombro restante en los demás bancos se debe realizar paralelamente durante la extracción del mineral con el debido desfasaje en tiempo, al

igual que en el caso inicial el plazo depende de la disponibilidad de equipos de carga y oscila entre 32 y 64 días.

Dilución

Para la determinación de este parámetro se consideraron los resultados de la minería de los años 2004, 2005 y 2006, con los valores siguientes:

Yacimiento	Tonelaje (t)	% Fe	% Ni	% Co
Moa Oriental	0,9807	1,007	0,9847	0,9825

Esta dilución resulta de la diferencia entre el % de componentes útiles de las Reservas probadas y el componente de las Reservas extraídas. El volumen se afecta por las pérdidas y el empobrecimiento, así como por el rechazo producido por la Planta de preparación de Pulpa. (Plan de mineria del año 2006 Empresa Pedro soto Alba).

Plan de producción de la Fabrica Pedro Soto Alba

Plan de producción: 33000 t

Plan de producción de la mina

$$\begin{split} P_{\min a} &= \frac{P_{fab} * 100}{Ni + Co * Em * Epp} \\ P_{\min a} &= \frac{33000 * 100}{1.31 + 0.133 * 0.9 * 0.85} \\ P_{\min a} &= 3165000t \end{split}$$

Donde:

Em : eficiencia de la planta metalúrgica

Epp: eficiencia de la planta de pulpa

Aquí debemos destacar que el yacimiento Moa Oriental tiene un plan de entrega del 65 %, de la produccion por lo que esta zona de trabajo se encargará de suministrar a la planta 2 057 000 t.

IV.4.Control de la calidad del mineral

Una característica importante de los yacimientos lateríticos la constituye la alta variabilidad de la ley de hierro, níquel y cobalto en todas las direcciones. La ley de níquel puede variar a muy poca distancia de 0.4 a 0.8%, por ello para lograr el óptimo procesamiento de mineral, la producción será planificada en aras de mantener los contenidos de níquel y cobalto dentro de los rangos admisibles industriales así como el volumen de mineral. Atendiendo los resultados obtenidos del programa de perforación, las operaciones mineras deberán ser cuidadosamente planificadas, el mineral deberá ser minado simultáneamente desde dos o más frentes para lograr la mezcla deseada. Los geólogos y técnicos de campo deberán monitorear y tomar muestras de los frentes activos en todos momento que se estime necesario, generalmente se toman muestras a cada camión.

Hay que tener alternativas de minería con varios frentes disponibles por sí eventualmente las muestras tomadas de los frentes indican una desviación radical de la información de la perforación y asegurar el volumen de mineral en otro frente con la calidad requerida.

IV.5. Régimen de los trabajos y plazo de explotación del sector 14

El régimen de trabajo en el yacimiento es continuo, o sea no están definidos los días laborables en cada mes, de acuerdo a la experiencia en años anteriores, por lo que el programa de producción admite solamente hasta 40 días improductivos al año, provocados por intensas lluvias que ocurren en la etapa invernal, en este periodo de tiempo los trabajadores son asignados a tareas de apoyo, al restablecimiento posterior de las actividades mineras, la actividad que más se afecta resulta ser la de escombreo, la cual incorpora todos sus trabajadores al apoyo en la extracción.

Teniendo en cuenta las ventajas que este régimen presenta y los magníficos resultados que se han obtenido y además por las características específicas de la empresa minera, se ha adoptado que el régimen de trabajo actual es de 336 días de trabajo al año.

Para la etapa de explotación del área 14, debido a las reservas de mineral que posee, estas serán agotadas en un tiempo límite de 83 días de trabajo. Para completar los 336

días laborables, por lo que se hace necesario la tarea de búsqueda de nuevas áreas para así cumplir con el plan de producción de la fábrica el que es (33 000t).

IV.6.Planificación de los turnos de trabajo

El programa de operaciones mineras se basa dos turnos de 12 horas al día y durante 7 días de la semana, cada trabajador promedia alrededor de 42 horas de trabajo semanalmente en uno de los dos turnos. La Brigada de Construcción de caminos trabajará sobre la base de un turno de 12 horas, los 7 días de la semana, y Desarrollo Geológico laborará un turno de 12 horas por día, con descanso los fines de semana.

Cada trabajador de Operaciones tiene derecho a descansar en dos ocasiones del turno, una para merendar (15 minutos) y la otra para almorzar (1 hora). El cambio de turno se realiza en 15 minutos y los operadores de equipos y choferes de tiro de mineral salientes entregarán los equipos personal y directamente en el área de trabajo.

IV.7.Volumen de los trabajos

El ciclo de explotación se puede definir como una sucesión de operaciones básicas aplicadas, tanto al material estéril como al mineral, que garantiza la explotación planificada y segura del yacimiento, con la utilización más racional de sus reservas. Según las condiciones del proyecto que se esté llevando a cabo, existirán o no otras operaciones auxiliares o de apoyo cuya misión será hacer que se cumplan con mayor eficiencia posible las operaciones básicas pertinentes, la s cuales se enuncian a continuación:

Labores mineras básicas

- Desbroce
- destape
- Arranque y carga
- Transporte
- Formación de escombreras

Como operaciones auxiliares tendremos: la construcción de caminos, drenajes, control de la erosión, etc.

Desbroce.

En nuestro caso esta actividad no se llevara a cabo puesto de que ya la zona de trabajo ha sido desbrozada como se muestra en la figura 1 del anexo.

Destape del terreno.

Todo el mineral que no cumpla las exigencias de la planta metalúrgica se considera escombro; su excavación, almacenamiento y transportación es inevitable en la minería, conlleva varios recursos e incrementa el negativo impacto ambiental como se muestra en la figura 2 del anexo.

Se puede decir que en cuanto al destape la planta metalúrgica, dentro de los parámetros tecnológicos y económicos, presenta índices específicos para el contenido de Fe, Ni y Co, la mena que no cumple con estos índices, se considera escombro y son llevados a la escombrera.

El destape consiste en arrancar la capa de los minerales lateríticos niquelíferos, los cuales son considerados fuera de balance por no cumplir con los requerimientos en cuanto al contenido de níquel. Esta operación se considera terminada una vez que llega a la cota del techo del mineral. Dicha operación se realizará con el mismo equipamiento que se utiliza para la minería.

(Retroexcavadora LIEBHERR, camiones VOLVO, bulldozer KOMATSU 56 D125 E-2 para trabajos auxiliares). La misma se iniciará un mes antes de iniciarse la extracción para una reserva de áreas listas a minar. El sistema de excavación es similar al empleado en la minería.

Arranque y carga.

Esta consiste en extraer del suelo natural el material (estéril o mineral) para su posterior transportación a la escombrera o a la planta de pulpa en dependencia del tipo de mena, las dos operaciones (arranque y carga) como se muestra en la figura 3 y4 del anexo serán realizadas por retroexcavadoras de tipo LIEBHERR (modelo 984), estas cargan los camiones VOLVO BM A40D; también se contará de un bulldozer KOMATSU 56 D125 E-2 para amontonar el material.

El desarrollo de la minería en el sector, se realizará por frentes continuos a través de los bancos múltiples.

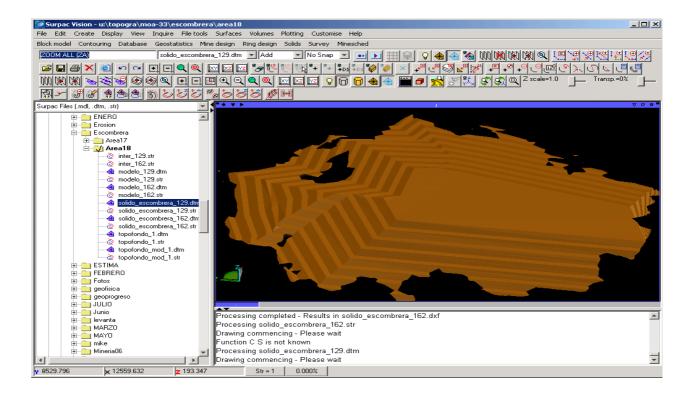
El método de carga más empleado será el de arranque y carga inferior, lo que permitirá una disminución sensible en la duración del ciclo de trabajo de ambos equipos y su operación se hace menos compleja. Esta se realizará con 90 grados, respecto al punto de extracción; en periodos de lluvia y durante la apertura de un nuevo frente se puede ejecutar carga a nivel de plataforma. El movimiento del transporte dentro de los límites del laboreo puede ser cerrado o continuo.

Transporte.

Esta es la actividad que posee en la actualidad una mayor repercusión económica sobre el ciclo de explotación, y que puede cifrarse entre el 40 y el 60% del costo total incluso de la inversión en equipos principales. Esta operación se basa en el traslado de los diferentes materiales hasta la planta de pulpa, en caso de mineral, o hasta la escombrera, en caso de estéril. La misma será realizada por camiones de tipo VOLVO BM (modelo A40D).

Formación de escombreras.

En el sector de explotación es necesario la construcción de una escombrera exterior y un depósito para suelo. El diseño de escombrera se realizara a través del software especializado Surpac Mines. Los parámetros de diseño utilizados son los establecidos en la empresa y que aseguran las mejores de condiciones para la ejecución de las escombreras.


- Altura del banco o capa (3m)
- Talud con pendiente (2:1=26.6°)
- Bermas de 4m entre el borde superior de cada capa

Las escombreras deben tener volumen suficiente para albergar el estéril, encontrarse a una distancia racional del punto de destape, no situarlas sobre mineral, esto en la medida de las posibilidades, y que cumplan con los requisitos de seguridad.

Las escombreras interiores formarán parte de lo que es la rehabilitación de las áreas minadas, y se formarán de manera similar que las exteriores, pero al final la superficie debe adoptar una forma muy parecida a la de la superficie del terreno original.

Esta escombrera consta con una área aproximada de 100 000 m². Del volumen total (900 000 m3) de escombro a remover en área 14 ira 475 000 m3 de escombro que es la capacidad de dicha escombrera y el resto de escombro ira para la escombrera de área 22 en la misma zona de Moa oriental.

IV.8.Diseño de la escombrera

IV.9.Diseño y construcción de caminos

Los caminos mineros se han clasificados en tres categorias:

Caminos Principales; son usados para la transportación de las reservas de mineral de un yacimiento, o una de sus partes, y su tiempo de servicio varía desde 6 meses hasta 5 años, o más.

Caminos secundarios; comprenden los caminos de accesos a un área del yacimiento, y su tiempo de uso es de 3 a 6 meses, de acuerdo a las reservas a las cuales se acceden y a los planes de minería a mediano plazo.

Caminos temporales; son aquellos que se usan para acceder a un área o a bancos de un área, y se explotan por un tiempo máximo de 3 meses según los planes de minería a corto plazo.

El diseño y construcción de los caminos se hace de acuerdo a la clasificación anterior. Todos los caminos principales de la mina han sido diseñados bajo los estándares elaborados por Knight Piesold en el año 1997. En el caso de los caminos secundarios de Moa Oriental se emplean las mismas base de diseño, excepto que, generalmente, el pavimento empleado es laterita y no roca de serpentina. El uso de la laterita permite aprovechar la ventaja que brinda el empleo de camiones articulados, los cuales son equipos diseñados para trabajar en terrenos difíciles, y además se reducen los costos asociados con el transporte de material rocoso desde Moa Occidental hasta Moa Oriental

El diseño y proyección de las trazas, por donde se desplazarán los equipos mineros, se realiza a través de un moderno y potente software, denominado CARTOMAP 5.0. Para la explotación del sector 14 no es necesario construir un camino principal ya que el área colinda con el acceso principal a los sectores de la zona este del yacimiento Moa Oriental. En este caso solo se deberán construir los accesos secundarios para asegurar la comunicación entre los bancos de trabajo (escombreo y minería) y el camino principal.

Estas vías deben mantener el ritmo de transportación bajo condiciones seguras. Para ello deben cumplir las siguientes exigencias:

- Firmeza.
- Pendiente adecuada $(i \le 8\%)$.
- Anchura de la vía admisible $(a \approx 15 m)$.
- Curva: radios, peraltes y sobreancho establecidos $(r \ge 30 m)$.
- Visibilidad en curvas y cambios de rasante.
- Convexidad o bombeo.

IV.10.Control de la erosión

Para dar cumplimiento a esta importante operación se ejecuta la siembra de árboles, arbustos e hierbas (fundamentalmente flora autóctona de la región) en las zonas minadas y escombreras, además de diseñar un sistema de sedimentadores en todo el perímetro de las áreas minadas. En esta ocasión no se ha diseñado aún debido a que la dirección de la entidad está valorando la posibilidad de variar el concepto principal de diseño de los sedimentadores. Antes de iniciar la minería del sector 14 se debe diseñar este sistema.

IV.11. Calculo del equipamiento

Se calcularán las productividades de los equipos que intervienen en la explotación minera del Sector 14. (Watson; 2006)

Equipamiento utilizado durante el arranque

Análisis del equipamiento empleado durante la extracción:

- Buldózer KOMATSU 56 D125 E-2
- Retroexcavadora LIEBHEER 984.
- Camión articulado VOLVO A40D.
- Retroexcavadora LIEBHEER 984.

La retroexcavadora *LIEBHEER 984* presenta las especificaciones técnicas que se muestran a continuación:

• Volumen del cubo, $V_c = 6m^3$

- Duración del ciclo de trabajo, $T_c = 40seg$.
- Longitud de la pluma, $L_p = 8000 mm$.
- Ancho del cubo, $A_c = 2600mm$.
- Alcance máximo durante el ataque, 5m.
- Aprovechamiento de la jornada laboral, $K_{ui} = 0.6$
- Utilización del parque, $K_{up} = 1$.
- Coeficiente de llenado, $K_{ij} = 0.95$.
- Coeficiente de utilización del parque, K_{up} =100 %
- Disponibilidad del equipamiento, D = 0.9.

IV.12. Calculo de la productividad de la excavadora

Capacidad real volumétrica del cubo

$$Q_{rexc} = V_c * K_{ll}$$
$$Q_{rexc} = 5.7m^3.$$

Densidad del material suelto o esponjado

$$\gamma_s = \frac{\gamma}{K_e} = \frac{1.05}{1.37}$$

$$\gamma_s = 0.76t / m^3.$$

Capacidad real de carga del cubo

$$Q_{rcexc} = Q_{rexc} * \gamma_s = 5.7 * 0.76$$
$$Q_{rcexc} = 4.33 t.$$

Cantidad de cubos por camión, en cuanto al volumen

$$N_{cv} = \frac{q_c}{Q_{resc}} = \frac{22.5}{5.7}$$

$$N_{cv} = 3.94$$

$$N_{cv} = 4 cubos$$

Cantidad de cubos por camión, en cuanto a la masa

$$N_{cm} = \frac{q_{cc}}{Q_{rcexc}} = \frac{37}{4.33}$$

$$N_{cm} = 8.5$$

$$N_{cm} = 9 cubos.$$

Donde:

 $q_a = 22.5 \, m^3$. Capacidad volumétrica del camión.

 $q_{cc} = 37 t$. Capacidad de carga del camión.

Determinación de la eficiencia y disponibilidad de la combinación excavadoracamión

$$\begin{split} E_{fb} &= F_e * E_{fop} * D_{mec} * E_{fib} \\ E_{fb} &= 0.83 * 0.95 * 0.93 * 0.9 \\ E_{fb} &= 66.3 \% \end{split}$$

Donde:

 $F_e = 0.83$ Factor de eficiencia (50 min)

 $E_{fop} = 0.95$ Coeficiente que tiene en cuenta la eficiencia del operador.

 $D_{\it mec} = 0.93$. Coeficiente que tiene en cuenta la disponibilidad mecánica.

 $E_{\it feb} = 0.9$. Coeficiente que tiene en cuenta el tráfico de los camiones $(5\,{\rm min.})$.

Productividad horaria de la excavadora

$$Q_{h} = \frac{3600 * V_{c} * D * K_{uj} * K_{up}}{T_{c} * K_{e}}$$

$$Q_{h} = \frac{3600 * 6 * 0.9 * 0.95 * 0.6 * 1}{30 * 1.37}$$

$$Q_{h} = 392 \ t/hora$$

Productividad por turno

$$Q_t = 12 * Q_{exc}$$

$$Q_t = 12 * 392$$

$$Q_t = 4704 \ t / turno$$

Productividad diaria

$$Q_d = Q_t * N_t$$

$$Q_d = 4704 * 2$$

$$Q_d = 9408 \ t / dia$$

Productividad del tiempo de explotación del sector

$$Qt \exp = Qd * R \sec tor$$

$$Qt \exp = 9408 * 83$$

$$Qt \exp = 780 864 t / a$$

Capacidad real volumétrica del cubo

$$Qrexc = Vc * Kll$$

$$Qrexc = 6*0.95$$

$$Qrexc = 5.7 m^3$$

Densidad del material suelto o esponjado en mineral

$$\gamma_s = \frac{\gamma}{K_e}$$

$$\gamma_s = \frac{1.05}{1.37}$$

$$\gamma_s = 0.76 t / m^3$$

Capacidad real de carga del cubo

$$Qr_escx = Qrexc * \gamma_s$$

$$Qr_{escx} = 5.7 * 0.76$$

$$Qr \ escx = 4.33t$$

Cantidad de cubos por camión en cuanto al volumen

$$Ncv = \frac{q_q}{Qexc}$$

$$Ncv = \frac{22.5}{5.7}$$

$$Ncv = 3.94$$

Se tomará 4 cubos por camión

Cantidad de cubos por camión en cuanto a la masa

$$Ncm = \frac{q_{cc}}{Qrexc}$$

$$Ncm = \frac{37}{4.33}$$

$$Ncm = 8.5$$

Se tomará 9 cubos por camión

Donde:

Q_{cc}- Capacidad volumétrica del camión = 22.5m³

Q_{cc}-Capacidad de carga del camión = 37 t

Eficiencia y disponibilidad de la combinación excavadora – camión

$$E_{\mathit{fb}} = F_{\mathit{e}} * E_{\mathit{fop}} * D_{\mathit{mec}} * E_{\mathit{ftp}}$$

$$E_{fb} = 0.83 * 0.95 * 0.93 * 0.9$$

$$E_{tb} = 66.3\%$$

Cantidad de excavadoras para la extracción

$$Nexc = \frac{R_{\sec t}}{Q_{t \exp}}$$

$$Nexc = \frac{492870.50}{387235.2}$$

$$Nexc = 1.2$$

Setomara 1 excavadora

Donde:

Rsec: Reserva total del sector

Qtexp: Productividad del tiempo de explotación de sector

IV.13. Calculo del transporte automotor durante la extracción

Capacidad volumétrica real del camión

$$Qrv_camion = N_c * Qrexc$$

$$Qrv$$
 $camion = 3.94*5.7$

$$Qrv_camion = 22.4 \, m^3$$

Capacidad de carga real del camión

$$Qrc_camion = N_c * Qrcexc$$

$$Qrc_camion = 3.94 * 4.33$$

$$Qrc \quad camion = 17t$$

Tiempo de carga del camión

$$T_{c \text{ arg}} = (N_c - 1) * \frac{t_{cexc}}{60}$$

$$T_{c \, arg} = 1.47 \, min$$

Tiempo de recorrido cargado

$$T_{rcar} = \frac{60 * L}{V_{cc}} * k$$

$$T_{rcar} = \frac{60*6}{22}*1.1$$

$$T_{rcar} = 18 \, \text{min}$$

Donde:

L- distancia desde el área 14 hasta la planta de pulpa

L= 6 Km.

V- velocidad del camión cargado

V= 22 Km/h

Tiempo de recorrido vacio

$$T_{rvac} = \frac{60 * L}{V_{cv}} * k$$

$$T_{rcar} = \frac{60*6}{24}*1.1$$

$$T_{rcar} = 16.5 \,\mathrm{min}$$

Tiempo de maniobra

$$T_m = 1 \min$$

Tiempo de muestreo

$$T_{mues}$$
=0.5min

Tiempo perdido en otras operaciones

$$T_{perd} = 1.5 \min$$

Tiempo de ciclo del camión

$$T_{cc} = 51 \min$$

Productividad horaria del camión

$$Q_h = \frac{60 * K_{ut} * q_{rc} * Kd * K_{up}}{t_{cc}}$$

$$Q_h = \frac{60*0.95*17*0.9}{51.5}$$

$$Q_h = 16.9m^3 / hora$$

Donde:

 K_{ut} - coeficiente de utilización del camión 0.95

 q_{rc} - capacidad real de carga del camión 17

Kd - disponibilidad 0.93

 K_{uv} - coeficiente de utilización del parque 100%

Productividades el turno

$$Q_t = Q_h * t_t$$

$$Q_t = 16.9 * 12$$

$$Q_t = 202.8 \ t / turno$$

Donde:

 t_t - tiempo del turno

Productividad en el día

$$Q_d = Q_t * C_t$$

$$Q_d = 202.8 * 2$$

$$Q_d = 405.6 \ t / dia$$

Donde:

 C_r - cantidad de turnos

Productividad del tiempo de explotación del sector

$$Q_{t \exp} = Q_d * R \sec tor$$

$$Q_{t \exp} = 405.6 * 83$$

$$Q_{t \exp} = 33664.8 t / t_{\exp}$$

Donde:

Rsector – cantidad de días para la explotación del sector

Cantidad de camiones necesarios para la extracción

$$C_{cam} = \frac{R_{\sec t}}{P}$$

$$C_{cam} = \frac{R_{\text{sec}t}}{P_{cam}}$$

$$C_{cam} = \frac{498865}{417}$$

$$C_{cam} = 1196.31 dias$$

Donde:

R_{sect} - Reserva total de sector

P_{cam} – Productividad diaria del camión

La explotación de dicho sector se realizará en un periodo de tiempo de 83 días como se muestra en la tabla 2 del anexo, donde se encuentran los resúmenes por bancos.

$$C_{cam} \frac{1196.31}{83} = 14.4U$$

En nuestro caso serán 14 unidades, se tomaran 15 camiones para el desarrollo de la minería hasta la planta de pulpa

IV.14. Equipamiento utilizado en el destape

Esta operación se realizará utilizando para el destape una excavadora LIEBHEER 984 de la misma manera que se procederá en el arranque del mineral.

Capacidad real volumétrica del cubo

$$Qr_{exc} = V_c * k_{ll}$$
$$Qr_{exc} = 6 * 0.95$$

$$Qr_{exc} = 5.7 \, m^3$$

Donde:

Vc - volumen de cubo de la excavadora

K_{II} – Coeficiente de llenado

Densidad del estéril suelto o esponjado

$$\gamma_s = \frac{\gamma}{k_e}$$

$$\gamma_s = \frac{1.50}{1.30}$$

$$\gamma_s = 1.15 t/m^3$$

Donde:

γ - masa volumétrica del estéril

 $k_{\it e}$ - coeficiente de esponjamiento del estéril

Capacidad real de carga del cubo

$$Qrc_{exc} = Qr_{exc} * \gamma_s$$

$$Qrc_{exc} = 5.7 * 1.15$$

$$Qrc_{exc} = 6.5 t$$

Cantidad de cubos por camión en cuanto al volumen

$$N_c = \frac{q_c}{Qr_{exc}}$$

$$N_c = \frac{22.5}{5.7}$$

$$N_c = 3.94$$

4 cubos

Donde:

 q_c - capacidad volumétrica del camión (m³)

Cantidad de cubos por camión en cuanto a la masa

$$N_c = \frac{q_{cc}}{Qrc_{exc}}$$

$$N_c = \frac{37}{6.5}$$

$$N_c = 5.6$$

se tomaran 6 cubos

Donde:

 $q_{\it cc}$ - capacidad de carga del camión (t)

Productividad horaria de la excavadora

$$Q_{exc} = \frac{3600 * Qr_{exc} * k_u * D * k_{up}}{30 * 1.30}$$

$$Q_{exc} = \frac{3600 * 5.7 * 0.83 * 0.9}{30 * 1.30}$$

$$Q_{exc} = 393 m^3 / h$$

Productividad por turno

$$Qt = Qexc * t_t$$

$$Qt = 393 * 12$$

$$Qt = 4716 m^3 / t$$

Donde:

 t_t - tiempo de duración del turno (h)

Productividad diaria

$$Q_d = Q_t * N_t$$

$$Q_d = 4716 * 2$$

$$Q_d = 9432 m^3 / d$$

IV.15. Cálculo del buldózer durante las operaciones de destape

2. Bulldozer KOMATSU 56 D125 E-2

Duración del ciclo de trabajo

$$T_c = \frac{L_1}{V_1} + \frac{L_2}{V_2} + \frac{L_1 + L_2}{V_3} + T_m + T_{ma}$$

$$T_c = 72seg$$

Donde:

L₁-distancia recorrida durante el corte (5 m)

L₂-distancia a que se traslada en el terreno (30 m)

V₁-velocidad durante el corte (0.75 m/seg)

V₂-velocidad durante el traslado de material (0.9 m/seg)

V₃-velocidad de marcha en vacío (1.2 m/seg)

T_n-tiempo de cambio de velocidad (2 seg)

T_{ma}-tiempo de maniobra (0.45 seg)

Cálculo del coeficiente que tiene en cuenta las pérdidas de material durante el traslado del mismo

$$K_n = 1 - L_2 * J^3$$

$$K_n = 1 - 80 * (0.06)^3$$

$$K_n = 0.98$$

Donde:

J- Coeficiente de corrección (0.06-0.1)

Ancho del prisma del material a trasladar

$$a = \frac{h}{tg\beta}$$

$$a = \frac{1.21}{tg30^0}$$

$$a = 2.1m$$

Productividad por hora

$$Q_h = \frac{Q_{Turno}}{D_T}$$

$$Q_h = \frac{1927}{12}$$

$$Q_{turno} = 161m^3 / hora$$

Productividad por turno

$$Q_{turn} = \frac{3600 * D_t * V * K_u}{T_c * K_e}$$

$$Q_{Turno} = \frac{3600 * 12 * 5.5 * 0.8}{725 * 1.37}$$

$$Q_{Turno} = 1927 m^3$$

Productividad diaria

$$Q_{dia} = Q_{Turno} * N_T$$

$$Q_{dia} = 1927 * 2$$

$$Q_{dia} = 3854 \text{ m}^3 / dia$$

Productividad mensual

$$Q_{mes} = Q_{dia} * N_d$$

$$Q_{mes} = 115620m^3 / mes$$

Productividad durante la etapa de explotación del Sector 14 en el destape

$$Q_{Sector10} = Q_{dia} * R_{Sector10}$$

$$Q_{Sector10} = 3854 * 336$$

$$Q_{fSector10} = 940376m^3 / Sector10.$$

Donde:

R = 336 dias Días laborales para el área 14.

Cantidad de buldózeres necesarios en el destape

Teniendo en cuenta que el bulldozer durante el destape de mineral sólo realiza funciones auxiliares, como la de amontonar parte del material que se dispersa por el suelo, para permitir la mejor operación de la retroexcavadora, prepara los accesos de los camiones hasta el frente de la excavadora, etc. se asume un (1) buldózer. De la misma manera se tomara un buldózer para los trabajos de extracción.

IV.16.Calculo del transporte automotor durante el traslado del estéril a la escombrera

Capacidad volumétrica real del camión

$$Q_{rv-cam} = N_c * Qr_{exc}$$

$$Q_{rv-cam} = 3.94 * 5.7$$

$$Q_{rv-cam} = 22.4 m^3$$

Capacidad real de carga del camión

$$Q_{rc-cam} = N_c * Qrc_{exc}$$

$$Q_{rc-cam} = 3.94 * 6.5$$

$$Q_{rc-cam} = 25 m^3$$

Tiempo de carga

$$T_{car} = (Nc - 1) * \frac{t_c}{60}$$
 $T_{car} = 3.94 - 1 * \frac{30}{60}$
 $T_{car} = 1.47$
 $aprximado\ a\ 2 min$

Tiempo de recorrido cargado

$$T_{rcar} = 60 \frac{L}{V_{cc}}$$
$$T_{rcar} = 60 \frac{1}{15}$$
$$T_{rcar} = 4 \min$$

Donde:

L - distancia del área 14 hasta la escombrera (Km.)

 $V_{\it cc}$ - velocidad del camión cargado (K/h.)

Productividad horaria del camión

$$Q_{h} = 60 * k_{ut} * k_{d} * k_{up} \frac{V_{m}}{t_{cc}}$$

$$Q_h = 60 * 0.83 * 1 * 0.9 \frac{26}{15}$$

$$Q_h = 78 m^3 / h$$

Productividad del camión en el turno

$$Q_t = Q_h * t_t$$

$$Q_t = 78 * 12$$

$$Q_t = 936 \ m^3 / t$$

Productividad diaria del camión

$$Q_d = Q_t * C_t$$

$$Q_d = 936 * 2$$

$$Q_d = 1872 \ m^3 / d$$

Cantidad de camiones para el traslado del estéril hasta la escombrera

$$C_{cam_esc} = \frac{P_{dexc}}{P_{dcam}}$$

$$C_{cam_{-}esc} = \frac{9342}{1870}$$

$$C_{cam\ esc} = 5$$

Donde:

P_{dexc} – Productividad diaria de la excavadora en escombreo

P_{dcam} – Productividad diaria del camión en escombreo

CAPÍTULO V. CÁLCULO DE LOS ÍNDICES TECNICOS ECONÓMICOS

V.1.Introducción

El parámetro fundamental que indica la efectividad de cualquier operación minera que se ejecute es el costo de producción de una tonelada de mineral extraído, así como los demás gastos en que se incurren en todo el proceso minero. Para el éxito de cualquier empresa que se acometa la base de todo triunfo es la racionalidad en el arte de manejar el capital. El ingeniero debe tener esto siempre presente, de este modo se obtendrán buenos resultados y de seguro cosechará importantes triunfos.

V.2.Cálculos económicos

Con vistas a obtener estos resultados se tienen en cuenta los gastos directos que se originan durante el desbroce, destape y arranque; aquí no se considerara la labor desbroce como se plantea anteriormente, puesto de que se trabaja en una zona ya desbrozada, se tendrán en cuenta además los gastos surgidos por concepto de mantenimiento, reforestación, y los gastos indirectos incurridos durante la explotación de la fase.

V.3. Gastos originados por la actividad de destape

Los gastos directos producidos por dicha labor $G_{d(destape)}$ están constituidos por la suma de los gastos por concepto de salario $G_{s(destape)}$, los gastos por concepto de depreciación de los equipos $G_{e(destape)}$ y los gastos por concepto de combustibles $G_{c(destape)}$. Tabla 5.3

Tabla 5.1 Gastos por concepto de salario $G_{s(destape)}$

Total	20	1397.06	2	50613.6
Operador de bulldozer	4	437.58	2	3500.64
Operador de retroexcavadora	8	463.21	2	7411.36
Chofer de camión.	40	496.27	2	39701.6
Puesto de trabajo.	Cantidad.	Salario mensual (\$)	Tiempo de trabajo(meses)	Salario total(\$)

Tabla 5.2 Gastos por concepto de depreciación de equipos $G_{s(destape)}$

Equipo	Cantidad	Valor inicial por equipo(US\$)	Vida útil (años)	Depreciación total 20% (US\$/año)
Camión articulado BM VOLVO A40DC	10	450000	5	900000
Bulldózer	1	480000	5	96000
Retroexcavadora	2	1200000	5	480000
Total	13	1605000	5	1476000

Tabla 5.3 Gastos por concepto de combustible $G_{c(destape)}$

Equipo	Cant.	Consumo por hora del equipo (L/hora)	Total de horas trabajadas en la fase	Total de Diesel consumido (L/fase)	Precio del diesel (US\$/L)	Costo total (US\$)
Camión articulado BM VOLVO A40D	10	29	1460	423400	0,65	275210
Bulldozer	1	26	1460	37960	0,65	24674
Retroexcavadora	2	56	1460	163520	0,65	106288
Total	13	111	1460	469962	0.65	406172

V.4. Gastos directos durante el destape

 $G_{d(\textit{destaspe})} = G_{s(\textit{destape})} + G_{e(\textit{destape})} + G_{c(\textit{destape})}$

 $G_{d(destane)} = 50613.6 + 1476000 + 406172$

 $G_{d(destape)} = US$ \$ 1932785.6

V.5. Gastos originados por la actividad de arranque

Los gastos directos producidos por dicha labor $G_{d(arranque)}$ están constituidos por la suma de los gastos por concepto de salario $G_{s(arranque)}$, los gastos por concepto de depreciación de los equipos $G_{e(arranque)}$ y los gastos por concepto de combustibles $G_{c(arranque)}$.

Los gastos directos producidos por dicha labor $G_{d(arranque)}$ están constituidos por la suma de los gastos por concepto de salario $G_{s(arranque)}$, los gastos por concepto de depreciación de los equipos $G_{e(arranque)}$ y los gastos por concepto de combustibles $G_{c(arranque)}$.

Tabla 5.4 Gastos por concepto de salario $G_{s(arranque)}$

Puesto de trabajo	Cantidad	Salario mensual per cápita(\$)	Tiempo de trabajo (meses)	Salario total en la fase (\$)
Chofer de camión.	60	496.27	3	8326.80
Operador de retroexcavadora.	4	463.21	3	5558.52
Operador de bulldozer	4	437.58	3	5550.96
Total	68	1397.06	3	10136.28

Tabla 5.5 Gastos por concepto de depreciación de equipos $G_{s(arranque)}$

Equipo	Cantidad	Valor inicial(US\$)	Vida útil (año)	Depreciación 20% (US\$/trimestre)
Camión articulado BM VOLVO A40D	15	450000	5	337500.00
Bulldozer	1	480000	5	24000.00
Retroexcavadora	1	1200000	5	60000.00
Total	17	1451439	5	421500.00

Tabla 5.6 Gastos por concepto de combustible $G_{c(arrangue)}$

Equipo	Cant.	Consumo por hora del equipo (L/hora)	Total De Horas trabajadas arranque	Total de diesel consumido arranque	Precio del diesel (US\$/L)	Costo total (US\$)
Camión articulado BM VOLVO A40DC	15	29	1675.35	728777	0,65	473705
Bulldozer	1	26	1675.35	433559	0,65	28313.42
Retroexcavadora	1	56	1675.35	93800	0,65	60892.74
Total	17	111	5026.05	866155.95	0.65	563001.37

V.6. Gastos directos durante el arranque

$$G_{d(arranque)} = G_{s(arranque)} + G_{e(arranque)} + G_{c(arranque)}$$
 $G_{d(arranque)} = 10136.28 + 421500.00 + 563001.37$
 $G_{d(arranque)} = US\$994637.65$

Hay destacar que en estos cálculos se utilizaron la depreciación y no la amortización de los equipos por ser este el índice que se usa en los cálculos económicos de la empresa Moa Nickel S.A, igualmente en dicha empresa la depreciación de un equipo es considerada en un 20% al año. Cabe señalar que los datos empleados son oficiales por lo que no se dan más detalles por limitantes de acceso a las fuentes de información, ya que se consideran clasificadas, acorde a la política de la empresa mixta.

V.7.Gastos por concepto de mantenimiento

Estos gastos (G_m) se obtienen a raíz de la suma de los costos por hora de mantenimiento (C_h) multiplicado por la cantidad de horas de mantenimiento planificados durante el tiempo que se explotará los equipos que participan en las labores (h_p) .

Tabla 5.7 Gastos por concepto de mantenimiento.

Equipos	Cant.	Mantenimiento planificado por equipo (h/trimestre)	Costo por hora (US\$/h)	Costo total de mantenimiento (US\$)
Camión articulado BM VOLVO A40D.	15	1675.35	3.50	87955.88
Bulldozer.	1	1675.35	6	10052.1
Retroexcavadora	2	1675.35	13	43559.1
Total	28	20103	45	141567.1

$$G_m = \sum (C_h * h_p)$$

$$G_m = US\$ 141567.1$$

V.8. Gastos directos generales

 $G_{\rm dg} = G_{\rm d(destape)} + G_{\rm d(arranque)} + G_{\rm m}$

 $G_{dg} = 1932785.6 + 994637.65 + 141567.1$

 $G_{dg} = US\$3068990.35$

V.9. Gastos indirectos u otros

$$G_{ind} = (G_{dg} * 0.06) + G_{r}$$

$$G_{ind} = (3068990.35 * 0.06) + 50000$$

$$G_{ind} = US\$234139.4$$

 G_r es Gastos por reforestación.

Estos valores se obtienen a partir del momento en que se invierte en la reforestación 0.31 por tonelada de mineral extraído. Esto está acorde a las reglamentaciones y política de la empresa, que emplean la referida tarifa.

$$G_r = 0.31 * R_{area14}$$

 $G_r = 0.31 * 490000$
 $G_r = US\$4600415,7$

V.10Gastos totales

$$G_{totales} = G_{gd} + G_{ind}$$

 $G_{totales} = 3068990.35 + 234139.4$
 $G_{totales} = US$ \$ 3303129.75

V.11.Costo de producción por tonelada de mineral extraído

$$C_{prd} = \frac{G_{total}}{R_{fase}}$$

$$C_{prd} = \frac{3303129.75}{490000}$$

$$C_{prd} = 6.7 \ \$/t$$

Este valor debido a los precios del níquel en el mercado mundial, le permite a la Empresa obtener cuantiosas ganancias. Por lo que se demuestra que la inversión es económicamente rentable.

CAPÍTULO VI. IMPACTO MEDIO AMBIENTAL

VI.1.Introducción

El objetivo fundamental de una evaluación del impacto ambiental es cumplir con el papel de diagnosticar o predecir la evaluación del medio, constituyendo una variable inicial, a contemplar desde la fase de toma de decisiones de una acción con posibilidades de ejecución.

La minería es la actividad industrial básica dedicada a la obtención de georecursos para satisfacer así la creciente demanda humana. De materias primas. La conciencia que se tiene hoy de la limitación de los recursos naturales, así como los diversos elementos que constituyen los ecosistemas que nos rodean, obliga a ejercitar las capacidades inventivas y creativas para solucionar los problemas de los pedidos de materias primas minerales, en claro equilibrio con la conservación de la naturaleza, permitiendo así salvaguardar el patrimonio que representa el medio y los recursos naturales para poder legarlo a generaciones posteriores.

VI.2. Alteraciones medioambientales producto a la explotación del Sector 14 del yacimiento Moa Oriental

Casi toda actividad humana es en menor o mayor grado agresiva para el medio ambiente, y las actividades mineras revisten especial interés ya que luego de realizarse la extracción de los recursos minerales, sino existe una rehabilitación de los terrenos laboreados, la degradación deja sin posibilidades reales de aprovechamiento; el carácter y magnitud de la contaminación de los focos en la zona es variable, este medio circundante se encontrará afectado una vez culminados los trabajos mineros. El área será denudada y eliminada parcialmente la capa vegetal, a consecuencia de la explotación a cielo abierto empleado, a la hora de seleccionar el mineral aprovechable se deposita el estéril en la zona prevista de la escombrera, la que es afectada por la erosión, ya sea eólica o por la acción del agua.

Desde la década del 40 se han venido explotando los yacimientos del la empresa Pedro Soto Alba acumulando una cantidad considerable de hectáreas que han sido minadas y no se han rehabilitado, esto aparte de las afectaciones que provoca al medio ambiente,

trae pérdidas significativas para la empresa por los impuestos que debe pagar por la utilización d estas áreas. En la Tabla 6.1 se exponen la totalidad de las áreas afectadas por la minería y que no se han rehabilitado, por las cuales, por cada hectárea se están pagando 10 dólares por mes.

Tabla 6.1 Total de áreas devastadas por la minería, sin reforestación (cierre 2005).

Yacimiento	Total general (ha)	Gastos por cannon (\$)
Yamaniguey	35.12	351.2
Zona Sur	54.36	543.6
Zona Pronóstico	111.46	1114.6
Atlantic	103.04	1030.4
Zona A	56.7	499.1
Moa Oriental	65.95	253.6
Total	426.63	3792.3

Es necesario señalar que hasta el cierre del año 2005 la empresa Pedro Sotto Alba desde la fundación como empresa mixta ha reforestado 176.9 ha en zonas minadas y ha protegido contra la erosión además otras 122.6 ha que aún están por reforestar.

La explotación del Sector 14 desde el punto de vista genérico causará una serie de pérdidas y alteraciones a los fundamentales recursos naturales de la zona.

Paisaje

La explotación minera causará:

Modificación de la estructura visual del paisaje por la alteración de sus elementos y sus componentes básicos. Esto supone, unido a la introducción de los elementos artificiales discordantes con el entorno, una disminución de la calidad paisajista de la zona. Modificación y homogeneización de la textura por la eliminación de la vegetación en toda el área de la fase, y contraste cromático muy llamativo dentro del entorno de la explotación. La apertura de los huecos y la creación de frentes de extracción supone la eliminación de la morfología natural, que es el elemento soporte sobre el que descansa

el reto de los elementos del paisaje. Las escombreras introducen un fuerte contraste discordante en forma y línea (son elementos geométricos artificiales, de gran volumen en lo que dominan las líneas horizontales y los ángulos rectos), y color (contraste cromático entre el escombro y la vegetación del entorno), que hacen que resalten desfavorablemente en la armonía del paisaje.

A pesar de este tipo de impacto tan común a casi todas las explotaciones mineras, en este caso a consecuencia de la cercanía de los núcleos poblaciones y carreteras, las hace más grave por el mayor número de observadores, ya que el receptor del impacto paisajista es el hombre. Por lo que se concluye que las fuentes principales del deterioro ambiental son los frentes de extracción y las escombreras.

Suelo

La eliminación directa del suelo, su ocupación por la creación de escombreras y la introducción de efectos negativos (compactación, erosión, acumulación de finos, polvos) suponen la pérdida irreversible de recursos naturales de gran valor y de muy difícil restauración.

Vegetación

Eliminación total o reducción directa o indirecta de la cubierta vegetal. El rigor de la alteración será distinto según el tipo de vegetación (supone una pérdida mayor eliminar un árbol autóctono, sano, que una la replobación de un pastizal) y la superficie dañada. La eliminación de la vegetación repercute sobre la fauna, los procesos ecológicos, el paisaje y la población humana.

Red de drenaje

Alteración permanente de los drenajes superficiales a través de la contaminación de las aguas por residuos sólidos y líquidos, aumenta el nivel de sedimentos, alteración del nivel freático. Disminución en el caudal de los arroyos y ríos, lo que trae consigo trastornos en la flora y fauna.

Atmósfera

Disminución de la calidad del aire, originada principalmente por las emisiones de polvo y gases generados por las labores de apertura, arranque, creación de escombreras, el tráfico y la no menos importante, construcción de caminos. Indirectamente todas estas emisiones de polvo afectan a las plantas las cuales se ven imposibilitadas de realizar sus funciones metabólicas normales.

Una de las fuentes de deflación y contaminación del aire la constituye la red vial diseminada por todo el yacimiento, debido al intenso tráfico y a la acción del viento en tiempos de seca.

VI.3.Medidas preventivas y correctoras para minimizar el impacto ambiental surgido

- Tratar que la explotación de la fase permita el menor impacto visual durante la explotación, mediante la introducción de la vegetación, el remodelado de la forma del terreno y la construcción de pantallas visuales de ocultación (creación de franjas defensivas de bosques).
- Acopio de suelo fértil antes de comenzar la explotación (medida preventiva) y la aplicación de fertilizantes al material de relleno y de la escombrera (medida correctora). Esto puede ser una buena alternativa por la pérdida de suelos, pero nunca será el terreno rehabilitado como su antecesor.
- La conformación de un sistema de terrazas para disminuir la erosión y permitir la instalación de una cobertura herbácea que favorezca el progreso de la vegetación.
- El riego de los caminos de acopio del mineral.
- La construcción de cunetas de diversión-colección y lagunas de sedimentación en los perímetros de las áreas mineras, y que deben ser mantenidas hasta el total cumplimiento de la rehabilitación (medidas a largo plazo).
- Las medidas a largo plazo como la sedimentación de cuencas río abajo debe ser sacada de servicio después de establecer la vegetación en superficies recuperadas y después de tener el terreno en condiciones pre-minadas.

- La atmósfera se purifica de modo natural mediante la sedimentación del polvo, el lavado del aire o en las gotas de lluvias, la disolución de algunos gases y partículas sólidas en las gotas de agua.
- En los caminos la disminución del polvo es menor cuando la vía está cubierta con una placa de tierra. Sí lo está por una placa de hormigón la concentración de polvo en el aire es de 30-100ml/m³ y cuando es natural oscila entre 150-350ml/m³, obligando a la búsqueda de sustancias que enlacen las partículas de polvo.
- Para disminuir la cantidad de polvo en los caminos se pueden emplear los siguientes métodos:
- El riego con soluciones de sales higroscópicas (de calcio y magnesio).
- La aplicación en la propia cobertura sólida de sustancias como el cloruro de calcio.
- Riego de agua (la efectividad del método dura entre 30-120min en días de temperaturas altas)

Para el desarrollo íntegro de las áreas afectadas resulta ventajoso el sistema de terrazas, especialmente para zonas con pendientes superiores al 20%, lo que aplicado con el avance de la minería permitirá el ahorro de tiempo y dinero, para una posterior dedicación forestal una vez concluida la minería de la fase.

Este sistema permite una rehabilitación de los suelos degradados por la minería, debido a que controla el escurrimiento superficial y controla la erosión de forma efectiva. Para la rehabilitación de las regiones se debe tener en cuenta la selección de las especies, teniendo en consideración lo siguiente:

Resistencias a plagas, adaptación a los cambios y variaciones existentes en el medio, formación de suelos y que fuesen autóctonas.

Para la rehabilitación del paisaje, se deben sembrar por todos los extremos de las áreas minadas, árboles altos (casuarinas, pino Cubensis), los cuales por su elevada talla realizan el papel de pantalla visual de ocultación.

Al concluir los trabajos de reforestación se verifica periódicamente las zonas tratadas, velando así que todo vaya según los planes previstos.

Para la realización de los trabajos de cierre parciales de mina por sectores se empleará la metodología propuesta

VI.4. Drenaje y Control de erosión y sedimentación

Debido a la irregular topografía que presenta el yacimiento Moa Oriental, a la intensidad de las lluvias en esta zona y a la gran superficie de terreno que será dañada por la minería podemos afirmar que existe una elevada potencialidad de arrastre de sedimentos y erosión en esta zona para los próximos años.

- Por ese motivo la Compañía canadiense Knight Piésold diseñó el Plan de Control de Sedimentos y Erosión (PCSE) para el yacimiento Moa Oriental con los siguientes objetivos:
- Minimizar la carga de sedimentos desde las operaciones mineras al ambiente.
- Integración del PCSE con las operaciones mineras para mantener la eficiencia en la producción.
- Reducir el mantenimiento de la infraestructura minera mediante el control de erosión.
- Establecimiento de superficies rehabilitadas estabilizadas y protegidas que requieran el mínimo o ningún mantenimiento.
- Utilización de materiales locales en el diseño y construcción.
- Implementación de soluciones de costo efectivas.
- Para la realización del diseño se contó con las informaciones necesarias, entre ellas:
- Hidrología para determinar el diseño de los flujos.
- Topografía para determinar las áreas de recolección de agua y localización de los componentes del PCSE.
- Suelos para determinar los requerimientos de control de erosión y sedimentación.

- Vegetación para la rehabilitación a largo plazo.
- Plan de Minería entender los cambios del paisaje ocasionados por las operaciones mineras.
- Control de Sedimentación:
- Eliminación de partículas mayores de 0.02 mm.
- Medidas a corto plazo (6-12 meses de vida para el período operacional):
- Tormentas de 1 en 5 años para el control de sedimentos.
- Tormentas de 1 en 50 años para la capacidad del aliviadero.
- Las medidas se deben diseñar y construir progresivamente para cada fase de minería.
- Las medidas a largo plazo como cunetas de diversión / colección y lagunas de sedimentación se deben construir en el perímetro de las áreas mineras y su duración debe abarcar todo el plazo de la rehabilitación. Medidas a largo plazo (< 10 años para el período de rehabilitación):
- Tormentas de 1 en 10 años para el control de sedimentos.

Las medidas a corto plazo se emplearán en las áreas mineras activas para ayudar a minimizar la erosión y sedimentos que van a las lagunas de sedimentación.

A grandes rasgos el plan consiste en el diseño y ejecución de lagunas de sedimentación en los límites exteriores de la zona de minería y diseño de las escombreras con parámetros óptimos desde el punto de vista antierosivo incluyendo las lagunas de sedimentación en sus límites.

VI.5.Protección e higiene del trabajo

En la mina de la Moa Nickel S.A. existen medidas de seguridad a cumplir cabalmente en cada puesto de trabajo, que se plasman a continuación:

Instrucción de seguridad para el puesto de trabajo del operador.

El operador debe tener los conocimientos básicos acerca de los trabajos a realizar, para esto deben haber recibido las instrucciones generales del trabajo.

VI.6. Requisitos en el puesto de trabajo

VI.6.1.Operador de bulldozer.

- Antes de iniciar el trabajo:
- Debe realizar una inspección visual del equipo para asegurarse de las condiciones del mismo.
- Comprobar el sistema hidráulico, luces de trabajo, frenos, etc.
- Recibir una explicación real del operador que sale, acerca del comportamiento de la máquina.
- Realizar una entrega correcta del equipo al operador que lo recibe.
- Poner en aviso cualquier hecho de relevancia durante el turno y que pueda repetirse en el siguiente.
- Dejar a la máquina limpia y organizada.

VI.6.2. Operador del camión articulado VOLVO BM A40D

- > Antes de iniciar las labores:
- Comprobar el estado de los sistemas de frenado, dirección, juegos de luces y relojes.
- Estado del frente de trabajo.
- Limpieza del puesto de trabajo.
- Durante las operaciones de trabajo:
- No posesionarse dentro del radio de acción de la máquina retroexcavadora.
- Lograr mayor horizontalidad del camión a la hora de ejecutar la carga.
- Circular con las velocidades establecidas.
- No adelantar ni transitar paralelo a otro vehículo.
- No depositar la carga directamente contra el talud de las escombreras o contra el borde del nivel inferior.

 No circular siempre por las mismas marcas dejadas por ese u otro camión, para evitar las zanjas.

VI.6.3. Operador de la retroexcavadora LIEBHERR 984

- > Durante el trabajo:
- Las maniobras de retroceso se realizarán con especial cuidado, apoyándose el operador en los espejos retrovisores.
- Al detenerse el equipo, el cubo debe estar apoyado en el suelo.
- No esperar por el próximo camión con el cubo en alto.
- Asegurarse que el material se expanda por toda la caja del camión.

Terminada la explotación de una zona se procede a evaluar los daños causados al medio ambiente y se definen los planes de rehabilitación de la zona. Para ello se analiza cual será la nueva superficie topográfica; se definirán fundamentalmente los depósitos de agua y los terrenos a reforestar siendo especialmente cuidadosos al definir las pendientes; luego se estudiarán cuales son los recursos necesarios para el movimiento de tierra a realizar y a partir de todo lo anterior se define la variante más adecuada.

Después de conformar la nueva superficie del terreno deberán trasladarse para ciertas zonas seleccionadas, desde los depósitos creados durante las labores de desbroce, el material que contiene la biodiversidad que originalmente presentaba la región. De esta manera se garantiza que la vida vegetal y animal que tradicionalmente ha existido en la zona, se regenere y mantenga su riqueza tradicional.

Un aspecto donde aún no se ha tomado la decisión final es el método de reforestación de las áreas afectadas, en la actualidad en el yacimiento Moa Oriental se están probando dos variantes antes de tomar decisión final en el primer caso la reforestación de los diques de sedimentación se realiza a través de siembra directa de la especie betiberia- formadoras de suelos en los taludes con el objetivo de evitar el proceso erosivo que provoca la lluvia, en el segundo caso se cubrió totalmente el talud con materia vegetal sin sembrar ninguna especie.

La ventaja del primer método radica en la magnitud del costo de la reforestación que es menor debido a que solo se utiliza la materia orgánica vegetal en el lugar particular donde se siembra el plantón de setiberia, la desventaja radica en la lenta difusión de esta especie.

En el segundo caso es más caro debido al incremento del volumen de materia orgánica para cubrir toda el área afectada, pero la efectividad antierosiva es mayor ya que la cobertura herbácea es general sin mucha exigencia desde el punto de vista biológico.

En ambos casos se recurre a especies no autóctonas de la zona debido al la alta exigencia de las especies endémicas y a sus limitadas propiedades de difusión. Ejemplo de ello es la ausencia total esta vegetación en las trochas realizadas para la explotación geológica dos décadas atrás, estos espacios han permanecidos todo este tiempo expuestos a la erosión y han perdido ya todas las propiedades biológicas del suelo.

Este aspecto debe ser resuelto definitivamente considerando las múltiples aristas que reviste, básicamente nos referimos a los aspectos ecológicos y económicos.

Finalmente se procede al completamiento de la vegetación de la zona mediante labores de reforestación. En este aspecto debe señalarse que las especies vegetales que serán sembradas deben ser las mismas que existían anteriormente o al menos ser compatibles con ellas y con las especies animales que pretendemos mantener en la zona.

Finalmente concluimos afirmando que tanto las labores preventivas como rehabilitativas deben considerarse como una parte del trabajo minero, y es por ello que en el proyecto ya se prevén esas medidas durante la ejecución de todas las actividades mineras.

La rehabilitación se ejecutará conforme al siguiente procedimiento: Las operaciones mineras se ejecutarán en áreas individuales y según se vayan agotando, en ellas se irá depositando el escombro procedente del destape de otras áreas en operación, seguido del recubrimiento con capa vegetal y la reforestación.

Conclusiones

- El sistema de explotación propuesto asegura de manera racional la extracción de la reserva mineral del sector 14 del Yacimiento Moa Oriental, con un costo de 6.7 USD/t.
- Para la transportación del mineral útil desde el sector 14 del yacimiento Moa
 Oriental hasta la planta de pulpa se necesitan 15 camiones articulados Volvo
 A 40 D y 1 retroexcavadora Liebherr 984.
- El escombreo debe iniciar 14 días antes que la minería con 2 retro y 5 camiones para cada una de ellas, para asegurar las primeras 13 000 t de mineral en el banco 101.

Recomendaciones

- Analizar las posibilidades de aplicación del método propuesto en otros sectores del yacimiento con características similares al estudiado en este trabajo.
- La distancia de transportación del escombro no debe exceder 1 km y las escombreras se deben ubicar en áreas sin interés para la minería, considerando la tendencia al aumento de los volúmenes del material estéril.

Bibliografía.

- ARIOSA IZNAGA, JOSÉ. Curso de yacimientos minerales metálicos tipo genéticos. Ciudad de la Habana: Editorial Pueblo y Educación, 1977.
- BORÍSOV, S. et al. Labores Mineral. Ciudad de La Habana: Editorial Pueblo y Educación, 1986.
- Directivos del departamento de Planificación e Ingeniería. Plan de Minería del año 2005 (Empresa Moa Níckel S.A.).
- FIGUEREDO HERRERA, YUDORQUIS: Proyecto de Explotación del Área-10 del yacimiento Moa Oriental. Dr. C. Ing. Watson Quesada, Roberto L, Ing Hernández Vidal, Edil (tutores). Trabajo de Diploma, ISMM-Moa, 2004, 78 páginas.
- Manual de Restauración de Terrenos y Evaluación de Impactos Ambientales en Minería. España: Instituto Tecnológico Geominero. 1989.
- OTAÑO NOGEL, José. Blanco Torrén, Roberto. Nociones de Minería. La Habana: Ministerio de Educación Superior, 1988.
- PEREDA HERNANDEZ SEGUNDO; POLANCO ALMANZA, RAMÓN. Et al.
 Transporte Minero. Ciudad de la Habana: Editorial Pueblo y Educación, 1999.
- PETIT QUIROGA, KAREN NELSON: Diseño del sistema de explotación del sector 10 del yacimiento Moa Oriental, en la Empresa Moa Nickel S.A-Pedro Soto Alba. Dr. Polanco Almanza, Ramón, Ing Vega Peruyero, Yosvani (tutores). Trabajo de Diploma, ISMM-Moa, 2003, 120 páginas.
- WATSON QUESADA ROBERTO. R D. Curso de Explotación de los yacimientos a cielo Abierto .2006.

Tabla -1. Relación entre el trabajador y los medios que deben usar para su protección

Lugar del cuerpo	Medio protector	Requisitos que debe cumplir el medio protector.			
Cabeza	Se usan cascos protectores que tienen como objetivo reducir el impacto de objetos que caigan de alturas más o menos elevadas	Resistentes a impactos, al fuego, a la humedad, peso ligero, aislamiento de la electricidad			
Oído	Tapones de oídos, orejeras o casco protector contra ruido	Que atenúe el sonido, que tenga confort y durabilidad que no tengan impactos nocivos sobre la piel que conserven la palabra clara y que sea de fácil manejo.			
Ojos y cara	Gafas protectoras, pantallas, viseras, caretas protectoras y espejuelos.	Protección adecuada para el riesgo específico que fue diseñado, comodidad en el uso de los mismos, ajuste perfecto y ninguna interferencia en los movimientos, durabilidad y facilidad de higienización.			
Manos y brazos	Guantes, almohadillas, protectores de brazo, mangas y protectores de dedo.	Que estén reforzados para que protejan al trabajador contra llamas, calor y cortaduras.			
Tórax	Delantales de piel, de goma sintética y para asido	Deben proteger contra chispas, cortaduras pequeñas y protección contra agua y tierra.			
Pies y piernas	Botas corte alto, tobilleras, polainas, almohadillas.	Casquillos de acero para los pies, anticonductivos, antichispas y deben resistir las descargas eléctricas.			
Vías respirato rias	Respiradores con filtro para polvo, máscaras con filtro para gases, respiradores con líneas de aire	Deben estar acorde con el elemento contaminante y el puesto de trabajo.			

Tabla -2. Reservas de minerales y volúmenes de escombro por bancos

Bancos	R.mena	Tiempo	Min.Acu	Escombro	Tiempo	Esc.Acu	
97	0		0	3944	1	3944	
98	0		0	16151	1	20095	
99	0		0	27727	2	47822	
100	2005	1	2005	41441	3	89263	
101	13377	3	15382	57725	7	146988	
102	25735	4	41117	61773	4	208761	
103	37147	6	78264	64738	4	273499	
104	39010	6	117274	73078	5	346577	
105	44220	7	161494	82494	5	429071	
106	37951	6	199445	73523	5	502594	
107	38633	6	238078	65579	4	568173	
108	51152	8	289230	54141	3	622314	
109	57489	9	346719	35636	2	657950	
110	50280	8	396999	24609	2	682559	
111	39378	7	436377	15471	1	698030	
112	25793	4	462170	12485	1	710515	
113	17864	3	480034	8846	1	719361	
114	11450	2	491484	5249	1	724610	
115	4792	1	496276	3492	1	728102	
116	2314	1	498590	458	1	728560	
117	275	1	498865	0	0	728560	
Total	498865			725870	83		

Tabla -3. Contenidos de los elementos nocivos por bancos

	Ni	Fe	Со	Sio2	Mg	Mn	Al	Sed.afec
97	0	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0	0
99	0	0	0	0	0	0	0	0
100	1.11	43.27	0.11	5.05	1.5	0.7	6.47	125
101	1.11	43.29	0.13	9.94	3.4	0.61	5.21	136
102	1.24	41.93	0.13	12	3.9	0.68	4.43	140
103	1.23	42.75	0.12	12	3.4	0.73	4.09	137
104	1.3	42.6	0.13	12.1	3.1	0.79	3.92	132
105	1.29	42.99	0.15	12	2.5	0.92	3.65	140
106	1.31	43.49	0.15	8.11	1.8	0.9	3.88	140
107	1.28	43.17	0.14	7.55	2.2	0.82	3.94	138
108	1.34	42.39	0.13	9.57	3.2	0.78	4.03	135
109	1.4	41.97	0.12	9.11	3.1	0.85	4.15	135
110	1.41	42.09	0.12	8.97	3.1	0.82	4	132
111	1.44	43	0.13	9.21	3.3	0.83	3.62	131
112	1.42	41.54	0.13	8.21	2.9	0.85	3.33	132
113	1.27	42.56	0.13	9.05	3.5	0.79	3.55	126
114	1.2	41.32	0.14	9.02	3.5	0.77	3.64	118
115	1.05	41.69	0.14	4.9	1.5	0.83	3.79	132
116	1.13	41.41	0.13	4.76	1.4	0.77	3.29	118
117	1.25	38.7	0.12	0	0	0	0	0
Total	1.31	42.53	0.13	9.78	3	0.81	4.04	139

Figura-1. Retroexcavadora LIEBHERR 984, en el destape

Figura-2. **Bulldoser en el destape**

Figura-3. Arranque de la roca

Figura-4. Carga de la roca

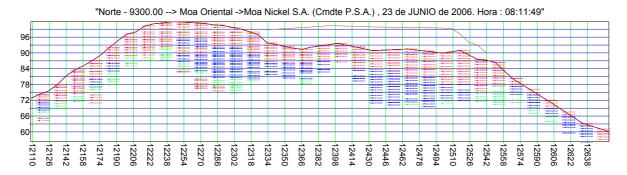


Figura-5. Perfil Geológico por el norte del Sector 14 del Yacimiento Moa Oriental

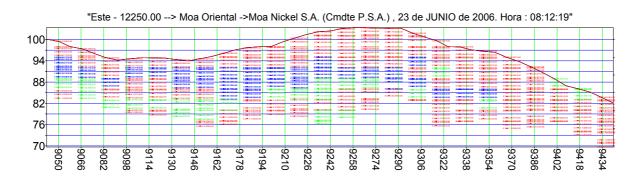


Figura-5. Perfil Geológico por el este del Sector 14 del Yacimiento Moa Oriental

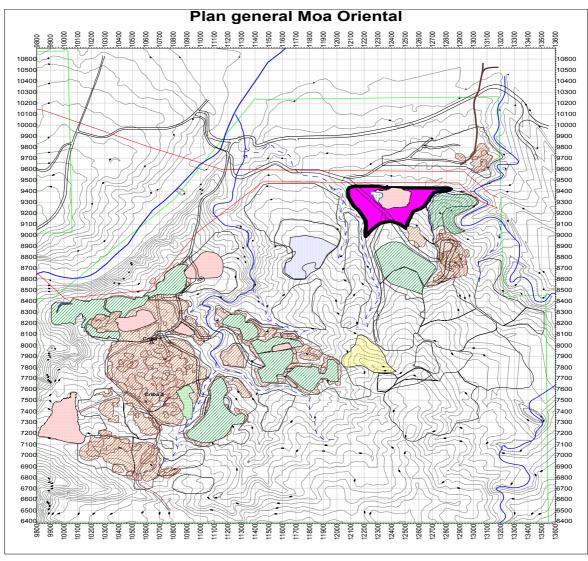


Figura-6. Plano general de la zona de estudio