

Carideli Katriana Villalobos González

Página legal

Título de la obra: Modelo Estratigráfico de la Formación Misoa Edad Eoceno, en las Arenas Superiores del Bloque III, Yacimiento URD-01. Lago de Maracaibo, 77pp. Editorial Digital Universitaria de Moa, año.2015 -- ISBN:

- 1. Autor: Carideli Katriana Villalobos González
- 2. Institución: Instituto Superior Minero Metalúrgico "Dr. Antonio Núñez Jiménez"

Edición: Lic. Liliana Rojas Hidalgo Corrección: Lic. Liliana Rojas Hidalgo Digitalización. Lic. Liliana Rojas Hidalgo

Institución de los autores: ISMM " Dr. Antonio Núñez Jiménez" Editorial Digital Universitaria de Moa, año 2015

La Editorial Digital Universitaria de Moa publica bajo licencia Creative Commons de tipo Reconocimiento No Comercial Sin Obra Derivada, se permite su copia y distribución por cualquier medio siempre que mantenga el reconocimiento de sus autores, no haga uso comercial de las obras y no realice ninguna modificación de ellas.

La licencia completa puede consultarse en:
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/legalcode
Editorial Digital Universitaria
Instituto Superior Minero Metalúrgico
Ave Calixto García Íñiguez # 75, Rpto Caribe Moa 83329, Holguín Cuba

e-mail: edum@ismm.edu.cu

Sitio Web: http://www.ismm.edu.cu/edum

Instituto Superior Minero Metalúrgico "Dr. Antonio Núñez Jiménez"

Facultad de Geología y Minería Departamento de Geología

Título: Modelo Estratigráfico de la Formación Misoa Edad Eoceno, en las Arenas Superiores del Bloque III, Yacimiento URD-01. Lago de Maracaibo

(Tesis en opción al título académico de Máster en Geología)

Autor: Carideli Katriana Villalobos González.

Tutor: Dr. Rafael Guardado Lacaba Msc. Yolimar García García

ÍNDICE

Introducción	1
Capítulo I. Fundamentos teóricos 1.1. Cuenca petrolífera del lago de Maracaibo. 1.1.1. Configuración tectónica. 1.1.2 Evolución Geológica de la Cuenca del Lago de Maracaibo. 1.1.2.1. Secuencia Tectónica 1: Fracturamiento o Agrietamiento del Jurásico. 1.1.2.2. Secuencia Tectónica 2: Margen Pasivo del Cretáceo. 1.1.2.3. Secuencia Tectónica 3: Cuenca de Antepaís Campaniense – Mestrichtiense. 1.1.2.4. Secuencia Tectónica 4: Fase de la Cuenca de Antepaís	8 8 8 14 16 16
Paleoceno – Oligoceno	20 21 22 24
Capítulo II. Metodología de la Investigación. 2.1. Metodología a utilizar	27 28 28 30 31 32 33 35
Capítulo III. Análisis y evaluación de los modelos estratigráficos del yacimiento URD 01 en las arenas superiores del Bloque III	36 36 45 50 52 57

Conclusiones	
Recomendaciones	58
Bibliografía	59
Anexos	61

INDICE DE FIGURAS

Figura 1. Mapa de ubicaciónFigura. 1.1. Distribución actual de los afloramientos y cortes del subsuelo	1
en el área de la Cuenca Maracaibo	9
mapaFigura 1.3. Columna estratigráfica regional de la Cuenca de MaracaiboFigura 1.4. Distribución y tipos de crudos presentes en la cuenca del Lago de Maracaibo	10 12 13
Figura 1.5. Mapa de distribución de terrenos alóctonos durante el Ordovícico-Silúrico (Orogénesis Herciniana) y desde finales del Mesozoico hasta el presente	15
Figura 1.6. Mapa de distribución de facies sedimentarias dominantes Cretácico Tardío	20 22 24 26
Figura 2.1. Diagrama de flujo utilizado para el análisis estratigráfico	27 31 33
Figura 3.1 Nomenclatura Estratigráfica Actual	37 44 45
Figura 3.4. Mapa de ANT de la subunidad B31 del Bloque III. Yacimiento UD 01Figura 3.5. Mapa de ANT de la subunidad B46 del Bloque III. Yacimiento	47
UD 01 Figura 3.6. Mapa de ANT de la subunidad B45 del Bloque III. Yacimiento UD 01 Figura 3.7. Mapas Estructurales de las subunidades superiores del Bloque	48 49
III. Yacimiento URD 01Figura 3.8. Mapas de Isopropiedades de las subunidades superiores del Bloque III. Yacimiento URD 01	51 52

Figura 3.9. Mapas de Isopropiedades de las subunidades superiores del Bloque III. Yacimiento URD 01. a) ANP. b) Vsh. c) Permeabilidad. d) Porosidad	53
Figura 3.10. Mapas de Isopropiedades de las subunidades superiores del Bloque III. Yacimiento URD 01. a) ANP. b) Vsh. c) Permeabilidad. d) Porosidad	54
ÍNDICE DE TABLAS	
Tabla 2.1. Listado de Pozos empleados	29
Tabla 3.1. Topes interpretados vs topes originales	38

Anexo A. Secciones Estratigráficas Dirección NE-SO	6
Anexo B. Continuación Secciones Estratigráficas Dirección NE-SO	62
Anexo C. Secciones Estratigráficas Dirección SE-NO	63

Anexo D. Mapa Arena Neta Petrolífera de la subunidad B31 del Bloque III. Yacimiento URD 01	64
Yacimiento URD 01Anexo F. Mapa de Permeabilidad de la subunidad B31 del Bloque III.	64
Yacimiento URD 01 Anexo G. Mapa de Porosidad de la subunidad B31 del Bloque III. Yacimiento	65
URD 01Anexo H. Mapa de Arena Neta Petrolífera de la subunidad B46 del Bloque III.	65
Yacimiento URD 01	66
Anexo I. Mapa de Volumen de Arcilla de la subunidad B46 del Bloque III. Yacimiento URD 01	66
Anexo J. Mapa de Permeabilidad de la subunidad B31 del Bloque III. Yacimiento URD 01	67
Anexo K. Mapa de Porosidad de la subunidad B46 del Bloque III. Yacimiento	07
URD 01Anexo L. Mapa de Arena Neta Petrolífera de la subunidad B45 del Bloque III.	67
Yacimiento URD 01	68
Anexo M. Mapa de Volumen de Arcilla de la subunidad B45 del Bloque III. Yacimiento URD 01	68
Anexo N. Mapa de Permeabilidad de la subunidad B45 del Bloque III.	60
Yacimiento URD 01Anexo O. Mapa de Porosidad de la subunidad B45 del Bloque III. Yacimiento	69
URD 01	69

INTRODUCCIÓN

La Cuenca Petrolífera del Lago de Maracaibo está ubicada al noroeste de Venezuela. Se extiende sobre toda el área ocupada por las aguas del lago y los terrenos planos o suavemente ondulados que la circundan, pueden delimitarse como sigue: al oestenoreste por el piedemonte de la Sierra de Perijá, al oeste-suroeste por la frontera colombiana hasta un punto sobre el río Guarumito, 12,5 km al oeste de la población de La Fría; al sureste por el piedemonte andino desde el punto mencionado hacia el río Motatán, ligeramente al este del cruce de Agua Viva; al este-noreste por la zona de piedemonte occidental de la Serranía de Trujillo y una línea imaginaria dirigida al norte hasta encontrar la frontera de los estados Zulia y Falcón, donde puede observarse un pequeño saliente hacia el este en la región de Quirós y en su parte norte, por la línea geológica de la falla de Oca.

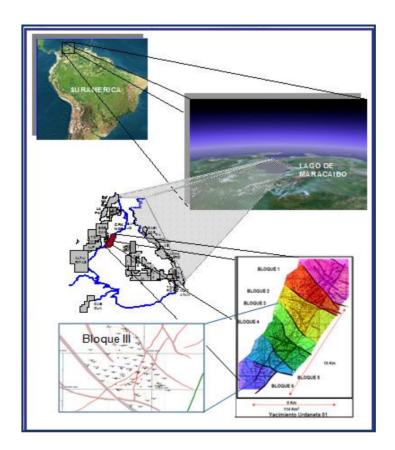


Figura 1. Mapa de ubicación. (PDVSA 2014)

La extensión de este trapezoide, de aproximadamente 50.000 km², corresponde políticamente en su mayor parte al Estado Zulia y extensiones menores a los estados Táchira, Mérida y Trujillo. Las líneas mencionadas anteriormente son bastante arbitrarias en sentido fisiográfico y geológico, pero corresponden en realidad al carácter geo-económico de la cuenca petrolífera como tal. Geográficamente, está incluida en su totalidad dentro de la cuenca hidrográfica del Lago de Maracaibo (Brenneman, 1960; Talukdar et al., 1985).

Tomando como necesidad de confeccionar un modelo estratigráfico de la Formación Misoa edad Eoceno, en las arenas superiores del bloque III, Yacimiento URD-01, lago de Maracaibo para la predicción de producción de los pozos perforados desde 1983, este modelo estratigráfico tiene como finalidad desarrollar una interpretación estratigráfica secuencial del área de estudio que permita una nueva visión y actualización más completa. Con el propósito de este de conocer, entender y predecir de las unidades definidas una mejor perspectiva en la explotación de crudos en el yacimiento. El modelado estratigráfico se utiliza para modelar superficies y mantos subhorizontales y, en general, se emplea en yacimientos sedimentarios petrolíferos. En el mundo, muchas operaciones de prospección petrolíferas utilizan esta herramienta estratigráfica.

Situación Problemica

El Bloque III del Yacimiento URD-01, adolece de un modelo que permita optimizar el plan de explotación del yacimiento URD-01.

Objeto

Estratigrafía de la Formación Misoa en el Bloque III, del yacimiento URD-01.

Objetivo general

Caracterizar estratigráficamente la Formación Misoa, en el Bloque III, del yacimiento URD-01.

Objetivos específicos

- Revisión de los topes de las diferentes subunidades presentes en las arenas superiores de Formación Misoa de Edad Eoceno.
- Determinar los cambios de facies, continuidad y tendencia de las arenas en el área de estudio.
- Elaboración de mapas estructurales a nivel de las sub unidades B31, B46 y B45 de la Formación Misoa.
- Interpretación de los mapas de isopropiedades a nivel de las sub- unidades B31,
 B46 y B45 de la Formación Misoa.

Hipótesis

Si se logra integrar las características estratigráficas, se podrá optimizar el plan de explotación del Bloque.

Para desarrollar esta investigación se tuvieron en cuenta métodos teóricos y empíricos de la investigación científica:

Métodos teóricos:

 Análisis y síntesis de la información obtenida a partir de la revisión de la documentación y literatura especializada.

Métodos empíricos: en la presente investigación se aplican:

- Las entrevistas a técnicos y especialistas: para comprobar la existencia de investigaciones y antecedentes relacionados con el tema.
- Procesamiento para la elaboración de mapas por medio del simulador Discovery.

La generación del modelo estratigráfico tiene el propósito de identificar las diversas unidades estratigráficas y ciclos sedimentarios que conforman y describen la secuencia estratigráfica en estudio, así como su extensión areal y su incidencia en la caracterización de los yacimientos asociados. El yacimiento URDANETA-01 representa para la División Occidente de Exploración y Producción de Petróleos de Venezuela, la acumulación de mayor cantidad de petróleo pesado original en sitio, lo que se traduce en la mayor cantidad de reservas remanentes, de allí la importancia de generar un plan de explotación que garantice el recobro optimo y racional de dichas reservas.

La tesis se estructuró del siguiente modo:

La introducción en la que se presenta el problema científico, el objetivo general y la hipótesis de la misma. Tres capítulos denominados del modo siguiente: Capítulo I. Fundamentos Teóricos. Capítulo II. Metodología a utilizar. Capítulo III. Caracterización Estratigráfica del área.

Estado del arte

Los modelos estratigráficos de los campos petrolíferos en los últimos años han tenido una gran importancia en la prospección del petróleo en Venezuela y en particular en la cuenca de Maracaibo. En el trabajo ERRORES COMUNES QUE INFLUYEN EN LA CUANTIFICACIÓN DE RESERVAS DE PETRÓLEO EN YACIMIENTOS DE ROCAS CLÁSTICAS. LABRADOR Tomás U. E. Lagomar. PDVSA. Cabimas. 2007, expone: En el cálculo volumétrico de reservas es común encontrar errores que tendrán un impacto al momento de hacer la contabilidad del recurso. El error cometido más comúnmente es la no corrección por buzamiento de las capas; aunado a esto, podemos obtener un error mayor al no considerar las desviaciones y el desplazamiento de los pozos en dichas

capas inclinadas, razón ésta por la que debe realizarse una corrección (no confundir con verticalizar pozo o TVD), en función a los cambios de ángulo y azimut con respecto al tope del intervalo de interés. Los cambios de facies son el problema con un mayor grado de incertidumbre por lo complejo que puede ser definir los límites de los subambientes sedimentarios, aunado al hecho de que dentro de una misma facies se pueden presentar cambios en las propiedades físicas de la roca. Argumentando más adelante: No existe técnica exacta para el cálculo de hidrocarburos en el subsuelo, no obstante, la aplicación de nuevos software de modelaje y visualización, estudios sedimentológicos, sismoestratigráficos, de atributos sísmicos, geoquímicos, petrofísicos y petrográficos, junto a las nuevas tecnologías en adquisición de información, fungen como herramientas imprescindibles para sincerar las reservas en rocas clásticas, actualizando los números que permitirán tomar decisiones pertinentes y a tiempo en todo lo referente al futuro de un campo petrolero.

LABRADOR Tomás U. E. Lagomar. PDVSA. Cabimas 2007 en su trabajo: MODELO GEOLOGICO-ESTRUCTURAL DEL FLANCO OESTE (ATICO) DEL AREA VLA-0008 EN EL BLOQUE I DE LA U. E. LAGOMAR. LAGO DE MARACAIBO, VENEZUELA. El entrampamiento de hidrocarburos en el subsuelo del Lago de Maracaibo es producto de la combinación de factores estratigráficos y estructurales, razón por la conviene introducir un nuevo modelo geológico-estructural para el miembro informal C-7 de la Formación Misoa, en el Ático del área VLA-0008 del Bloque I, limitada por una superficie erosiva en la base y verticalmente por un contacto de falla con la secuencia superior de Misoa del área VLA-0031 del mismo Bloque. La sección basal de la Formación Misoa (Eoceno Temprano), posee un espesor promedio de 700 pies, y está conformada por areniscas, limolitas y lutitas producto de secuencias progradacionales y retrogradacionales sucesivas, características de un ambiente fluvio - deltáico con predominio de mareas. Finalmente, el resultado se ajustó no sólo a los modelos de tectónica regional actuales, sino también al comportamiento de producción de los

pozos, razón por la que nuevos pozos permiten actualmente drenar las reservas remanentes, corroborando así el modelo, el comportamiento de Lama-Icotea y el nivel de corte para C-7, el plano de falla como sello lateral, para continuar un estratégico plan de explotación a lo largo del sistema de fallas dentro del Bloque I.

PORRAS Jesús, CASTILLO Carla., MACHADO Vanessa & CHIRINOS Nelson. Petrobras Energía.. Petrowayuu 2007; en su trabajo BASAMENTO EN LA CONCEPCIÓN, CUENCA DE MARACAIBO: OPORTUNIDAD DE EXPLOTACIÓN DE UN YACIMIENTO NO CONVENCIONAL. Plantean un esbozo histórico de la prospección y explotación de hidrocarburos del basamento naturalmente fracturado del occidente venezolano,

AUDEMARD Franck, SINGER André, ACOSTA Luis. & GONZÁLEZ Rogelio FUNVISIS. Dpto. Ciencias de la Tierra. Caracas. 2007 en su trabajo: LA FALLA DE BURBUSAY (BLOQUE DE MARACAIBO, VENEZUELA OCCIDENTAL) ACCIDENTE ACTIVO SINESTRAL SUBMERIDIANO: demuestra, entre las que cabe también mencionar de oeste a este, y en posición relativa más occidental: Icotea, Pueblo Viejo y Valera, que disocian el bloque triangular de Maracaibo en bloques menores elongados norte-sur, que responden a un modelo de rotación en estantería de libros ("Bookshelf rotation"), generado por la cupla cizallante dextral impuesta por las fallas activas de Oca-Ancón de orientación este-oeste y la falla de Boconó de orientación NE-SW, ubicadas al norte y sureste respectivamente. Al igual que las otras fallas que conforman esta familia, la falla de Burbusay muestra indicios contundentes de actividad tectónica reciente.

Gerencia de exploración estudios estratégicos de producción. Caracas 1995. SINTESIS GEOLÓGICA, MARCO SECUENCIAL Y PERSPECTIVAS EXPLORATORIAS DEL EOCENO DE LA CUENCA DE MARACAIBO: realiza un estudio de la Cuenca de Maracaibo con el fin de madurar y densificar el estudio de BP/PDVSA. A través de este estudio se establecieron 15 límites de secuencias, se definen nueve (9) conceptos exploratorios, un marco secuencial-cronoestratigráfico uniforme para la cuenca basado

en 24 transectos sísmicos, 40 transectos de pozos y 65 mapas (estructurales, isópacos, de velocidad, porcentaje de arena, paleoambientes, distribución de recursos de hidrocarburos, modelado geoquímico y otros), se estableció un modelo integrado de paleofacies/paleogeografía para las secuencias eocena, se documentó las fases de generación, expulsión y acumulación y finalmente la creación de una base de datos computarizada, multidisciplinaria, interactiva e integrada para su uso futuro.

System Technology Associates, Inc. Agosto 2001. INFORME DE LA FASE IIIC ESTUDIO DE SIMULACIÓN PARA LOS YACIMIENTOS MISOA E ICOTEA, URDANETA-01 CUENCA DE MARACAIBO: La necesidad de probar nuevos métodos de recuperación a través de la simulación numérica proporcionó el estímulo para conducir este nuevo estudio de Urdaneta-01, lográndose así un mejor entendimiento del yacimiento de Urdaneta-01. Se encontró que probablemente hay fallas adicionales en el yacimiento que se encuentran por fuera del volumen sísmico 3D. Un estimado de reservas aún no drenadas indica que el más alto potencial sobrante se encuentra a lo largo del lado oriental de la Falla de Urdaneta Oeste, y a lo largo del lado occidental de la Falla Flower.

CAPÍTULO I. FUNDAMENTOS TEORICOS.

1.1. Cuenca petrolífera del lago de Maracaibo

1.1.1. Configuración tectónica

La roca madre por excelencia en la zona es la formación La Luna, de edad Cretáceo Tardío, cuyas facies se extendieron por toda Venezuela occidental hasta Colombia. Sin embargo, se han encontrado rocas madre de importancia secundaria en el Miembro Machiques de la formación Apón perteneciente al Grupo Cogollo y en la formación Los Cuervos del Grupo Orocué (Talukdar et al., 1985). El petróleo fue generado, migrado y

acumulado en diversos pulsos, siendo el más importante el ocurrido durante el levantamiento andino. Las principales rocas yacimiento clásticas son las Formaciones Río Negro y Aguardiente de edad Cretáceo, grupo Orocué y las formaciones Marcelina del Paleoceno, Mirador-Misoa del Eoceno, Lagunillas y La Rosa del Mioceno (WEC, 1997).

Las calizas fracturadas del Grupo Cogollo Cretáceo temprano, constituyen los vacimientos carbonáticos más relevantes, mientras que los sellos regionales son las formaciones Colón y Paují. Localmente, constituyen sellos importantes el Miembro Machiques de la formación Apón y las lutitas espesas dentro de las formaciones ubicadas hacia el centro del Lago de Maracaibo, como Misoa, Lagunillas y La Rosa, e incluso secuencias cercanas a los frentes de deformación, como la formación León y los Grupos Guavabo ubicado en Los Andes y El Fausto en la Sierra de Perijá (WEC, 1997). En la figura 1.1 se muestra la distribución actual de los afloramientos y cortes del subsuelo en el área de la Cuenca del Lago de Maracaibo. Los datos de afloramientos son de Maze (1984) y Borges (1984). (A) Afloramientos áreas en naranja y cortes del subsuelo áreas marrones relacionados a las capas rojas de la formación La Quinta del periodo de deformación tectónica del jurásico tardío inferior. Las fallas conocidas o deducidas que han estado activas durante la fase de la fractura están indicadas. (B) Afloramiento áreas en verde oscuro y cortes áreas punteadas de verde oscuro de rocas carbonáticas de variadas formaciones del cretáceo relacionadas al margen pasivo. Están indicadas las fallas conocidas o deducidas que han estado activas durante la fase del margen pasivo. El arco de Mérida de Salvador (1986) está mostrado con una línea roja punteada. (C) Afloramiento y cortes áreas en azul de rocas del Paleógeno de varias formaciones de la cuenca de antepaís. Están indicadas las fallas conocidas o deducidas que han estado activas durante la fase de esta cuenca. (D) Afloramientos áreas amarillas y cortes áreas amarillas punteadas de rocas de varias formaciones de la cuenca del neógeno relacionadas al levantamiento de los Andes y al desplazamiento

del bloque Maracaibo, mostrando las fallas conocidas o deducidas que han estado activas durante la fase del margen pasivo.

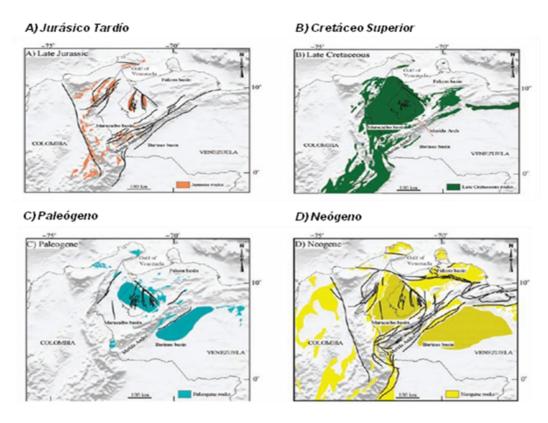


Figura. 1.1. Distribución actual de los afloramientos y cortes del subsuelo en el área de la Cuenca Maracaibo.

En la figura 1.2, las formaciones a la izquierda de la carta se encuentran en la Sierra de Perijá, las formaciones del medio se ubican en la Cuenca del Lago de Maracaibo, y las formaciones a la derecha se presentan en los Andes de Mérida. Se identificaron seis discordancias en el límite de la secuencia tectónica en la Cuenca del Lago de Maracaibo que están numeradas sobre la parte izquierda de la carta limitando las siguientes discordancias del Pre-Cretáceo, Paleoceno, Eoceno, y Mioceno Superior. Las seis secuencias tectónicas están relacionadas a las cuatro fases tectónicas importantes identificadas como I – IV en la parte izquierda de la carta. Estas fases

tectónicas incluyen: I =La fase de la fractura del Pre-Cretáceo (Jurásico Tardío), II = El Cretáceo (Fase del margen pasivo Neocomiense a Mestrichtiense), III = La fase de la cuenca de antepaís en el Paelogeno; y IV = La fase del levantamiento, desplazamiento, y reducción de los Andes en el Oligoceno Superior-Holoceno. Además se muestra en el mapa los espesores totales de sedimentos en kilómetros, en el tope del basamento acústico del Paleozoico. Modificado por Parnaud et al. (1995)

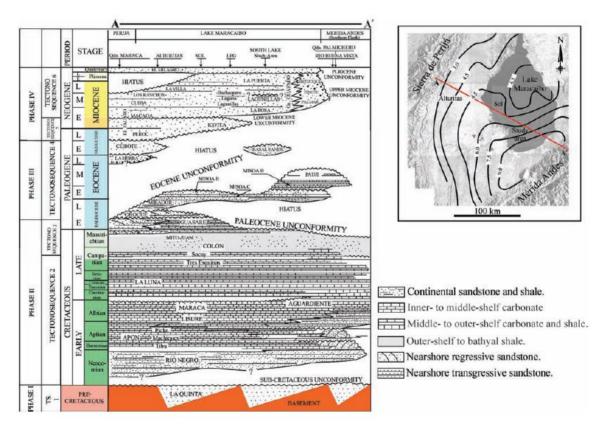


Figura 1.2. Columna de las formaciones Mesozoicas y Cenozoicas y sus características sedimentarias de la Cuenca del Lago de Maracaibo junto a la línea de traza de la sección mostrada en el mapa (modificado por Parnaud, 1995).

La figura 1.2 muestra una columna estratigráfica regional modificada por Parnaud (1995) y Castillo (2001) resumiendo las principales secuencias tectónicas, nombres de formaciones y paleoambientes de la cuenca Maracaibo. Una columna con mejores detalles, se incluye en la figura 1.3.

Cronologia (Edad,Ma)				Formación	Grupos	Litologia Gráfica	Ambiente Sedimentario	Eventos Tectónicos y Sistema Petrolifero	Litologia	
1,6		Pleistoceno		El Milagro			Fluvio deltaico y	Movimientos de la falla	Areniscas friables y arenas	
5,5			Plioceno	La Puerta			Continental	de Boconó	no consolidadas Arcillas abigarradas y areniscas	
25		Mioceno	Tardio	L a Villa-Los ranchos-	ranchos-		Marino	Sobrecorrimientos. Establecimiento de depocentros Miocenos	Arenas poco consolidadas, lutitas y algunos lignitos.	
			Mio	Medio	Lagunillas La Rosa	ē		Marino	Falla Transcurrente	Lutitas gruesas marinas con intercalaciones de arena
			remplano	Ceibote-Palmar				Segundo episodio de	Lutitas y arcillitas macizas blandas	
36		Oligoceno		Icotea	Ē.		Eólico - Lacustre	Inversión Tectónica y	Lutitas y arcilitas macizas	
				Carbonera	-			Reactivación Transtensional	blandas a gris claro	
39	2	10000	***************************************	*****************	2222	9999999	Discordan		5 to 500 44 55 to 4 500 a 800 a	
,	20		Tardio	Mene grande	is .					
	CENOZOICO	-		Pauji			Marino	Depositación de Reservorios	Arcilitas y lutitas interestratificadas con areniscas	
		2		Caus	ļ.			Comienzo del Margen Activo Transtensional y el Primer	Arenisca de grano grueso a conglomeratica	
49		Eoceno	Medio	Mirador-La Sierra	is B Arenas C					
54		Eo	ğ	Misoa			Paralico			
			Temprano		Arenas B	-		episodio de Inversion Tectónica		
				********	****	************	Discordance			
				Cuervos/Marcelina	į.				Niveles de Carbon. Areniscas. Lutitas y limolitas carbonasas.	
67			Paleoceno	Barco / Guasare			Marino Somero		Intervalo productor porosidad 7,1 - 20 % permeabilidad promedio	
71				Maastrichiense	Mito Juan Colon			Pltfrma Mixta	Formación de Trampas	149 md Lutitas y limolitas carbonasas
		Cretacico tardio	Campaniense	Socuy			Marino		Arcillas arenosas, el contenido de arena y limos aumenta hacia el tope	
84		tacico	Santoniense						Calizas laminadas densas gris	
85	0	Cre	Coniaciense	La Luna			Plataforma	Depositación de Rocas Madre	oscuro a negro, carbonaceas a bituminosas y arcillas calcareas	
89	OOIC		Turoniense				Carbonática		oscuro a negro, carbonáceas a bituminosas y arcillas	
94	MESOZOI								calcáreas.	
99		OL	Cenomaniense O Albiense	Maraca	COG	HH		Desarrollo del Margen	Areniscas calcáreas, calizas arenosas glauconíticas,	
_		Ta Alpiense	Lisure	0		Continental Pasivo	calizas grises, calizas coquinoides			
12		Albiense		Piche Apón		= = 100	Plataforma Mixta	(Reactivacion extensional de estructuras previas)	У	
			Machiques	L			as estructuras previds)	algunas lutitas.		
121			cic	Aptiense	Tibu	O	王王			Caliza gris azulosa, dura y densa, con intervalos
27		Cretacico	Barremiense	Pío Magra	1			Vulcanismo y	Conglomerado Basal	
131		J	Neocomiano	Río Negro			Fluvial Aluvial	Metamorfismo	Congromerado Dasar	
	00000	0000		<u> </u>	2222	annanda "Aad	Discordanc	ig		
		Ва	asamento Pre-	La Quinta		瓣	Aluvial Lacustre	Rifting y Extensión Cortical	Limolitas y Areniscas	
			Cretacico			-	Rocas	(Jurásico Tardío)	Esquistos verdes y	

de archivos de PDVSA 2001)

Las secuencias tectónicas están rodeadas por discordancias presentes en la cuenca, incluyendo las discordancias del sub-Cretáceo, Paleoceno, Eoceno y el Mioceno Inferior (Fig. 1.2). Las discordancias están designadas por la edad estratigráfica de sus hiatos (Ej.: discordancia del Eoceno).

Los principales campos petroleros se encuentran en la costa oriental del Lago de Maracaibo, los que proceden principalmente de yacimientos terciarios, como por ejemplo: Cabimas, Tía Juana, Lagunillas, Bachaquero, Mene Grande y Motatán. En la costa oeste se encuentran campos con producción importante en el cretácico, además del terciario; entre los que se encuentran el campo de Urdaneta del Lago de Maracaibo y los del Flanco Perijanero, que son, de norte a sur: La Concepción, Mara, La Paz, Boscán y Alturitas. En el centro, los campos se ubican a lo largo de la estructura del sistema de fallas de Lama-Icotea; entre ellos se cuentan: Lago, Centro, Lama y Lamar (WEC, 1997).

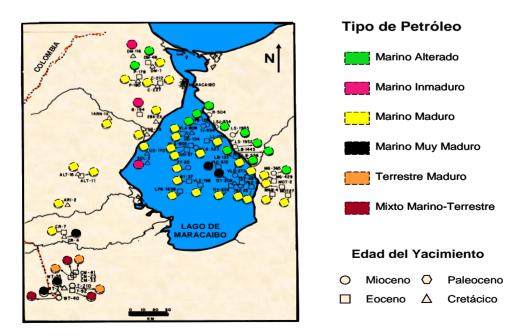


Figura 1.4. Distribución y tipos de crudos presentes en la cuenca del Lago de Maracaibo. (Modificado de Talukdar et al., 1985)

Los crudos de la Cuenca del Lago de Maracaibo presentan diferentes grados de madurez y de alteración (Gallango et al., 1985) (Figura 1.4). En general, los crudos más livianos ocurren en yacimientos cretácicos profundos y se van haciendo más pesados a medida que se acercan a los yacimientos terciarios más someros.

1.1.2. Evolución Geologica de la Cuenca del Lago de Maracaibo

Los terrenos que constituyen el Basamento Pre-Cámbrico de la Cuenca del Lago de Maracaibo son alóctonos adosados a la Placa Suramericana durante el Paleozoico temprano (Orogénesis Caledoniana: 570- 385 Ma.); posteriormente ocurrió la sutura del alóctono al Paleozoico, durante la Orogénesis Herciniana (385-245 Ma); dicho alóctono incluyó terrenos precámbricos, entre los cuales sólo se ha determinado la edad de las rocas graníticas de la Sierra Nevada de Santa Marta en Colombia. La última colisión tuvo su inicio a finales del Mesozoico del Cretáceo (González de Juana et al., 1980).

La Figura 1.5 muestra la distribución de los terrenos alóctonos que se soldaron al autóctono del Paleozoico temprano, durante el período Ordovícico - Silúrico. Aquellos donde hay rocas paleozoicas y que se adosaron en el Paleozoico temprano, se reconocen ahora como parte del basamento de los terrenos incorporados durante la historia tectónica del Caribe, como el constituyente del cinturón orogénico del Paleozoico temprano al norte de la Falla de Apure y como parte del basamento de los Andes y de la Cuenca del Lago de Maracaibo. En el subsuelo del Lago de Maracaibo este terreno está representado por rocas metasedimentarias ordovícicas, que también

afloran en los Andes. Los terrenos alóctonos de edad devónica, que se adosaron a Suramérica en el Paleozoico tardío, están ahora aflorando en la Sierra de Perijá. Como parte de la historia de la acreción del alóctono del Paleozoico tardío contra el temprano (previamente suturado), se reconocen rocas graníticas producto de la subducción por debajo del borde norte de la Placa Suramericana (WEC, 1997).

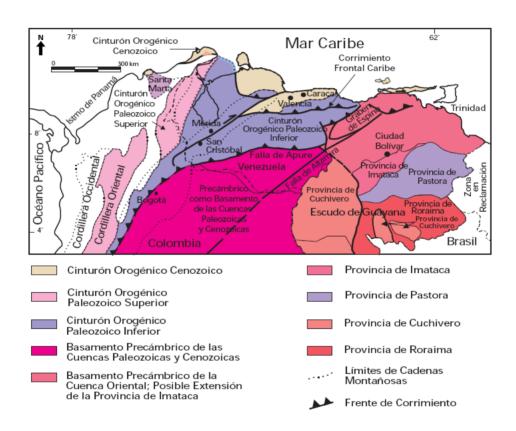


Figura 1.5. Mapa de distribución de terrenos alóctonos durante el Ordovícico-Silúrico (Orogénesis Herciniana) y desde finales del Mesozoico hasta el presente. (Tomado de WEC, 1997)

En Venezuela, la rotura o "rifting" de Pangea (super-continente que reunía las masas continentales de América, Europa y África actuales) produjo varias estructuras

importantes que posteriormente influyeron en la evolución de las cuencas sedimentarias venezolanas. Dentro de Venezuela Continental, la apertura del Proto-Caribe indujo el desarrollo de valles de extensión o grábenes con una tendencia noreste, en los que se incluyen los grábenes de Apure-Mantecal y Espino, así como también los grábenes de los Andes y Perijá en Machiques Uribante, y el ubicado en el Lago de Maracaibo (WEC, 1997).

1.1.2.1. Secuencia Tectónica 1: Fracturamiento o Agrietamiento del Jurásico Tardío

La secuencias tectónica 1 representa el basamento acústico de la Cuenca del Lago de Maracaibo en el límite inferior de la imagen de la sísmica y la exploración profunda dentro de la cuenca (Lugo y Mann 1995) (Fig. 1.2). La secuencia consiste en las rocas sedimentarias del Paleozoico tardío de la formación Mucuchachí y las capas rojas superpuestas de la formación La Quinta del Jurásico, derivados de la erosión de los bloques metamórficos fracturados del Paleozoico, expuestos durante la separación de Pangea (Schubert 1979, Maze 1984). Las capas rojas relacionadas a la fractura son producto del material piroclástico del grupo La Gé depositado en grábenes o valles elongados (Lugo y Mann 1995; Parnaud 1995) que comprenden las rocas Jurásicas que rodean la Cuenca del Lago de Maracaibo (Audemard, 1991; Lugo y Mann, 1995) (Figura 1.1.A).

Durante el Cretácico Temprano, la sedimentación fue controlada en su inicio por el sistema de fallas de los grábenes jurásicos. A continuación, la subsidencia se estabilizó y el Grupo Cogollo (carbonático) se depositó en un extenso mar epicontinental transgresivo sobre Venezuela Occidental (WEC, 1997).

1.1.2.2. Secuencia Tectónica 2: Margen Pasivo del Cretáceo

La secuencia tectónica 2 fue depositada sobre un margen pasivo (Figura 1.1. A), que incluyó las unidades carbonaticas y clásticas del Cretáceo temprano y está rodeada por la discordancia basal del Cretáceo, la cual separa la plataforma carbonatica del Cretáceo subyacente en la roca fracturada, del basamento metamórfico descrito anteriormente. La configuración estructural de la cuenca durante este período se caracterizó por los levantamientos, las micro-cuencas y la actividad tectónica en el oeste de la Cuenca del Lago de Maracaibo, las cuales se relacionan en muchos trabajos al levantamiento de la Cordillera Central de Colombia (Erlich 1999; Macsotay 2005), Renz (1981), utilizando secciones trazadas desde los afloramientos a lo largo del área de la montaña que rodea la cuenca de Maracaibo, interpretaron un levantamiento del basamento del arco de Mérida. Lugo y Mann (1995) dedujeron la continuación del Arco de Mérida dentro de la terminación sur del Lago de Maracaibo, la cual afectó el espesor de las rocas en el margen pasivo del Cretáceo (Figura 1.1.A). El tope de la secuencia tectónica está definida por el Miembro Socuy de la Formación Colón (Fig. 1.2). La secuencia tectónica del Miembro Socuy, y el margen pasivo del Cretáceo incluye las siguientes formaciones que se muestran en la figura 1.2 y la descripción detallada de los estudios de afloramientos en los bordes de la cuenca por los siguientes autores: Río Negro (Hedberg 1931), Apón (Sutton 1946), Lisure (Rod y Maync, 1954), Aguardiente (Notestein 1944), La Luna (Garner, 1926), y el Miembro Socuy de la Formación Colón (Sutton 1946, González de Juana et al., 1980).

Las formaciones Apón, Lisure, Aguardiente y Maraca conforman el Grupo Cogollo (González de Juana et al., 1980). Todas las rocas carbonaticas del Grupo Cogollo se depositaron en una plataforma carbonatica superficial (Azpiritxaga, 1991). La formación La Luna en el Cretáceo suprayacente al Grupo Cogollo forma una roca madre única en su clase en el mundo la cual es la responsable del más del 98% de los hidrocarburos generados en la Cuenca del Lago de Maracaibo (Talukdar y Marcano, 1994; Nelson

2000; Escalona y Mann 2006c) (Fig. 1.1.B). El tope de La formación La Luna rica en material orgánico está definido por las rocas carbonaticas del miembro Socuy. Este contacto está caracterizado sobre los datos provenientes de la sísmica por un continuo reflector producido por la impedancia acústica entre la arcilla subyacente de la formación La Luna y las rocas carbonaticas suprayacente del miembro Socuy.

En la figura 1.6 se indica conceptualmente la distribución de paleoambientes y unidades estratigráficas principales durante el Cretáceo tardío en el norte de la Placa Suramericana. A partir del final del Albiense, se inicia desde el este de Venezuela y de manera diacrónica hacia el oeste, la invasión marina que llegó a cubrir extensas zonas hacia el sur del país, las cuales se mantenían como áreas expuestas a la erosión desde finales del Jurásico o incluso desde finales del Paleozoico. Esta invasión marina coincide con el pulso mundial transgresivo del Cretáceo tardío, responsable de la sedimentación de calizas, lutitas y ftanitas ricas en materia orgánica tanto en América como en Europa. Estas rocas se conocen en Venezuela como las Formaciones Querecual-San Antonio (Grupo Guayuta), Mucaria, Navay y La Luna (WEC, 1997).

Hacia finales del Cretáceo y comienzos del Paleoceno, Venezuela Occidental sufrió finalmente el efecto de la colisión entre la Placa de Nazca (Océano Pacífico) y el Occidente Colombiano.

1.1.2.3. Secuencia Tectónica 3: Cuenca de Antepaís Campaniense - Mestrichtiense

La secuencia tectónica 3 fue formada por los efectos prematuros de la colisión oblicua entre el Gran Arco del Caribe y el noroeste de América del Sur (Figura 1.1..B, C), y delimitada en su base por la formación Socuy y en su tope por la discordancia del Paleoceno. La secuencia tectónica fue depositada en una cuenca de antepaís y está compuesta de rocas sedimentarias clásticas de la formación Colón (Liddle 1928) y Mito

Juan (Garner 1926) del Cretáceo, junto con la formación Guasare del Paleoceno (Lugo y Mann 1995; Parnaud 1995) (Figura 1.2). Las rocas pelágicas y clásticas de la formación Colón se dedujeron que se depositaron en la región distal de una cuenca de antepaís que resultó de la colisión del Arco Caribeño con el Noroeste de América del Sur. (Cooper 1995, Parnaud 1995) (Figura 1.1..A). La formación Colón es transicional dentro de la suprayacente Formación Mito Juan que fue depositada en un ambiente salobre a marino (Sutton 1946). Las rocas del Paleoceno consisten de una sección de plataforma superficial mixta de sedimentos clásticos y carbonaticos. En el tope de esta sección se produce un reflector sísmico extenso y continuo debajo del área del Lago de Maracaibo (Lugo y Mann 1995; Castillo y Mann 2006).

Las areniscas de la formación Colón en el Cretáceo, exhiben un cambio importante en la litología a partir de la subyacencia del Jurasico y el Cretáceo derivada de las unidades ricas en cuarzo y de la estratigrafía continental. La aparición de un cinturón de arcilitas grises a oscuras en la formación Colón en el oeste y suroeste de la permitió concluir la acreción de un arco hacia el oeste y suroeste de la Cuenca del Lago de Maracaibo (Van Andel, 1958). Audemard (1991) y Marcha (2004), deduciendo los datos de la sísmica 2-D y 3-D, interpretaron la presencia de clinoformas buzando hacia el este y noreste en la parte noroeste de la cuenca para sostener el evento de acreción mencionado por Marcha (2004) y concluyeron que la formación Guasare subvacente al Paleoceno fue depositada sobre una topografía relativamente plana ya que no fue influenciada por la colisión temprana y el evento hacia el oeste. Lugo (1991) sugirió que la relativa regresión marina durante el Cretáceo-Paleoceno es la responsable debido a la naturaleza regresiva, de las características particulares de la formación Colón observadas en la Cuenca del Lago de Maracaibo en ése momento. Sin embargo, se mantiene la controversia sobre la existencia de una cuenca de Antepaís en el Cretáceo-Paleoceno al este.

Existen evidencias de que la sedimentación del Grupo Orocué y posiblemente las formaciones Guasare y Marcelina, estuviesen controladas por los frentes de deformación de la citada colisión; éstos generaron sucesivos depocentros de edades cada vez más jóvenes hacia el este de lo que hoy en día es la Sierra de Perijá. Al norte y oeste de la Cuenca del Lago de Maracaibo al inicio del Paleoceno, la formación Guasare en cambio, representa ambientes más someros y que reflejan una mayor lejanía de los frentes de deformación, previamente a la instalación de los ambientes paludales costeros de la formación Marcelina (WEC, 1997).

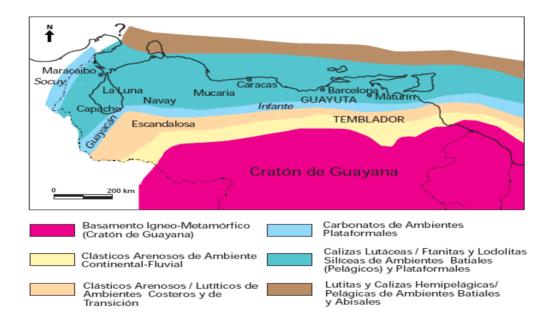


Figura 1.6. Mapa de distribución de facies sedimentarias dominantes Cretácico Tardío. (Tomado de WEC, 1997)

1.1.2.4. Secuencia Tectónica 4: Fase de la Cuenca de Antepaís Paleoceno - Oligoceno

La secuencia tectónica 4 está compuesta por las rocas lacustres a fluvio-deltaicas definidas por la discordancia del Paleoceno en su base y la discordancia Oligoceno – Mioceno en su tope (Fig. 1.2). Las unidades sedimentarias en esta secuencia tectónica registran una transición sedimentaria del margen pasivo. Esta transición coincide con el esfuerzo emplazante hacia el sur de las napas de Lara en el Eoceno medio (Stephan 1985, Audemard 1991; Lugo 1991; Parnaud 1995) (Figura 1.1.C, D).

Las formaciones contenidas en esta secuencia tectónica incluyen la muy estudiada Formación fluvio – deltáica Misoa. (Marguregui, 1990; Lugo y Mann, 1995; Escalona y Mann 2006b); la formación Trujillo (lo más distal de rocas sedimentarias de aguas profundas; Mathieu, 1989) y la superficial-marina Formación Paují (Sutton 1946; González de Juana et al., 1980; Mathieu 1989) (Fig. 1.2). La secuencia tectónica 4 está caracterizada por un carácter regresivo definido por facies fluviales. La sucesión del Eoceno está compuesta principalmente por areniscas cuarzosas de grano fino a medio, subangular a redondo, con subordinaciones de arcilla (Lugo y Mann 1995). La formación Misoa es la roca almacenadora más importante que se formó en los campos petroleros de la Cuenca del Lago de Maracaibo y es discutida en detalle por Escalona y Mann (2006b, c).

1.1.2.5. Secuencia Tectónica 5: Levantamiento de la Sierra de Perijá en el Oligoceno

La secuencia tectónica 5 está limitada por la discordancia del Eoceno en su base y la del Mioceno superior en su tope (Figura 1.2). En esta secuencia tectónica dominan los depósitos clásticos marinos superficiales e incluyen las arenas transgresivas de la formación Icotea en el Oligoceno superior. La cuña clástica del Oligoceno fue

depositada durante el levantamiento principal de la Sierra de Perijá, el cual controló la subsidencia al igual que la dispersión del sedimento (Audemard, 1991; Castillo; 2001).

El Neógeno en Venezuela está signado por importantes períodos de formación de montañas, los cuales son una consecuencia directa de la interacción de las placas del Caribe y Suramérica. En el Plioceno, la orogénesis en todo el norte de Venezuela terminó de definir las cuencas petrolíferas actuales y levantó extensas zonas constituyendo el Sistema de Montañas del Caribe y el ramal de los Andes Venezolanos, el cual separa a las cuencas del Lago de Maracaibo y Barinas-Apure. En la Sierra de Perijá, el Grupo El Fausto es una unidad molásica, relacionada con las montañas de los frentes de deformación en el límite occidental de la Cuenca del Lago de Maracaibo (WEC, 1997).

1.1.3. Geología local del área de estudio.

El campo Urdaneta Oeste se ubica al Noroeste en la Cuenca de Maracaibo (Figura 1.7). Presenta como principal yacimiento de explotación, el denominado Yacimiento Urdaneta – 01 (URD – 01), perteneciente a la Segregación de Urdaneta Pesado (10° - 12° API); tiene una extensión aproximada de 19 Km. de largo por 6 Km. de ancho. Está representado, estructuralmente, por un anticlinal fallado, de buzamiento muy suave, de eje noreste - suroeste con declive al sur, el cual ocupa el área central y norte del campo. El mismo ha sido dividido en 6 grandes bloques en base a la interpretación de un conjunto de fallas sellantes (Intevep, 1999). Cada bloque tiene un comportamiento de producción diferente, aunque el crudo producido es de igual gravedad API.

El Campo Urdaneta Oeste fue descubierto en el año 1952 con la perforación del pozo URD-01, no obstante es a partir de 1982 cuando se inicia su explotación a gran escala como resultado del aumento de la demanda energética a nivel mundial.

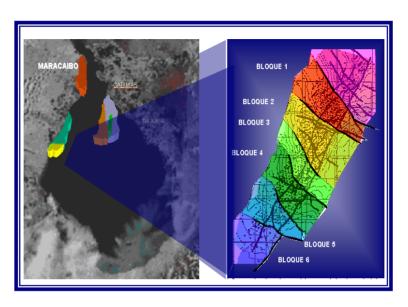


Figura 1.7. Ubicación del Yacimiento Urdaneta 01.(PDVSA, 2012)

El Yacimiento URD – 01 presenta gran heterogeneidad (discontinuidades laterales en los lentes estratigráficos ya correlacionados y grandes cambios de facies entre pozos distantes 300 m entre sí). Presenta un lente lutítico de 5 a 30 pies de espesor aproximado el cual se ha denominado informalmente "lutita guía" ya que es útil para correlacionar y se observa persistente en todo el yacimiento. Además, el mismo ha permitido dividir operacionalmente a la Formación Misoa en dos (2) secciones: B-X-S/D Superior y B-X-S/D Inferior.

En el Yacimiento URD – 01 se han cortado, hasta la fecha, nueve (9) núcleos de los siguientes pozos: UD–165, UD–199, UD–204, UD–313, UD–319, UD-552, UD-577, UD-588 y UD-747. Estudios realizados a estos núcleos muestran facies de frente deltaico hacia el tope de la sección eocena e infrayacente a la misma se presentan canales distributarios y llanuras de marea. La descripción petrográfica, para la formación Misoa

en el Yacimiento URD – 01, indica areniscas con altos porcentajes de cuarzo mono y policristalino, muy bajos porcentajes de feldespatos y como minerales accesorios, la moscovita y la glaucomita.

En el Yacimiento URD – 01 dominan dos (2) patrones de fallas: un patrón de fallas normales de dirección Nor-Noroeste con buzamiento hacia el Norte y otro de dirección Nor-Noreste constituido por una falla de tipo inversa llamada "Falla Principal de Urdaneta". Además, existen fallas normales semi paralelas a la falla principal localizadas hacia la zona norte del yacimiento las cuales fueron formadas durante la evolución de la falla principal.

La parte basal de la sección eocena corresponde a areniscas completamente saturadas de agua. La determinación del tope estructural de éstas areniscas se tomó como referencia para establecer la profundidad final de las nuevas localizaciones a perforar en el área. Estructuralmente, ésta parte basal se presenta de forma escalonada dentro de los bloques, y no cumple estrictamente con el concepto del Contacto Agua—Petróleo (C.A.P.). Desde el punto de vista petrofísico se le denominó como "zona de saturación de agua movible".

El Yacimiento URD – 01 se encuentra produciendo oficialmente de las arenas del Oligoceno (Formación Icotea) y Eoceno (Formación Misoa – miembro B-X-S/D), situadas supra e infrayacentes a la discordancia del Eoceno, respectivamente. Se ha comprobado comunicación entre ambas unidades, razón por la cual se le considera un solo yacimiento.(Figura 1.8)

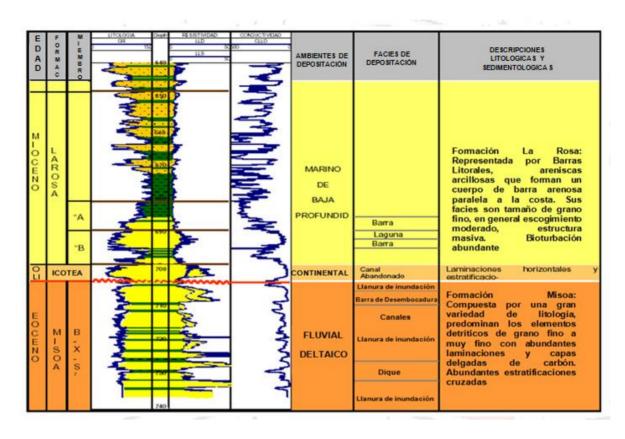


Figura 1.8. Columna estratigráfica URD-01 (PDVSA, 2014)

1.1.3.1. Descripción del Bloque III

El Bloque III está ubicado en la parte central del Yacimiento Urdaneta 01. Se encuentra limitado al Norte por una falla normal de aproximadamente 50 pies de salto que separa los Bloques II y III y al Sur una falla normal de aproximadamente 100 pies de salto que separa los Bloques III y IV. Cuenta con un área de 3493 Acres.

Para este Bloque se calculó, un POES volumétrico de 1720 MMBIs, factor de recobro de 11.8% con un recobro acumulado de 5.81%, reservas recuperables de 128.77 MMBIs, producción acumulada de 50.10 MMBIs, reservas remanentes totales de 146.6

MMBIs y agotamiento de 2.91%. El mecanismo de producción predominante es la compresibilidad del volumen poroso y la expansión de los fluidos.

Como características principales del Bloque se tiene, presión inicial de 3700 Lpc @ 7550 pies, presión actual de 1800 a 2700 Lpc al datum de 7550 pies y temperatura de fondo de 180°F porosidad de 26%, permeabilidad de 700 a 1800 md, viscosidades entre 180 y 220 Cps a condiciones de yacimiento, espesor de arena bruto de 400 a 700 pies, espesor de arena neto de 100 a 380 pies, saturación de agua inicial de 20 a 36% y C.A.P.O a 7850 pies aproximadamente.

El potencial actual del Bloque III es 5773 BNPD y la producción 235 BNPD; Para el momento del estudio se encontraban 31 pozos activos y 36 pozos inactivos. El cálculo de declinaciones para cada pozo perteneciente al Bloque III mostro rangos de declinación por pozo entre 4% y 12% anual.

Los pozos productores en este bloque presentan diferentes tipos de completación. Entre los años 1983-1989, se completaban con revestimiento cementado y se cañoneaba la formación Misoa en sus diferentes lentes, en algunos casos se cañoneaban también la formación Icotea obteniendo una producción de hasta 400 BNPD en Gas Lift. Desde el año 1994, se completaron algunos pozos verticales en hoyo abierto con liner empacado logrando aumentar la producción hasta 600 BNPD y posteriormente en 1996, se instalaron BES aumentando la producción hasta 1000 BNPD. Entre 1997 y 1998, se perforaron pozos, con diferente producción con BES. Los pozos verticales completados en hueco abierto reducen un promedio de 700 BNPD. A partir del año 1998 se comenzó a perforar pozos altamente inclinados aproximadamente de 85° de inclinación empacados.

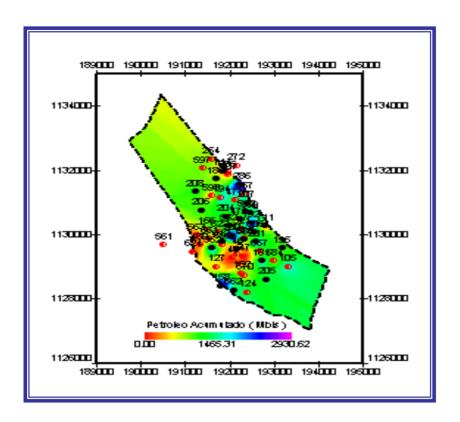


Figura 1.9. Bloque III del Yacimiento Urdaneta 01. (PDVSA 2013)

CONCLUSIÓN DEL CAPITULO I

Las fallas normales que limitan el Bloque III al Norte y Sur, son producto de la evolución tectónica de la cuenca del Lago de Maracaibo, que permitió la formación de la estructura geológica y entrampamiento de los hidrocarburos en el subsuelo. Hoy día el yacimiento ha sido drenado en gran parte, sin embargo existen zonas prospectivas que aun manejan importante cantidad de reservas, es por ello se requiere la aplicación de herramientas y procedimientos que serán útiles para el desarrollo de esta investigación

para obtener una visión más a fondo que facilite estrategias para el mejoramiento del plan de explotación.

CAPITULO II. METODOLOGÍA DE LA INVESTIGACION

2.1 Metodología a utilizar

Para llevar a cabo este estudio se realiza una serie de pasos, con el fin de alcanzar los objetivos planteados; la secuencia de estos se describe a continuación:

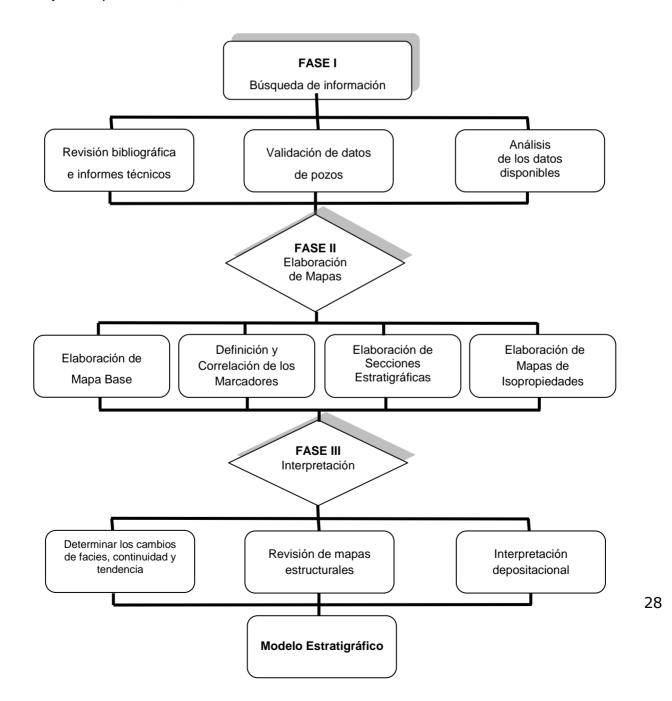


Figura 2.1. Diagrama de flujo utilizado para el análisis estratigráfico (Villalobos, 2015).

2.1.1 Búsqueda de información

La revisión Bibliográfica consistió en la búsqueda de toda la información disponible que permitió conocer detalladamente el área de estudio y desarrollar el presente trabajo. Este se llevo a cabo de la siguiente manera:

- Consultas bibliohemerográficas a través de material escrito (libros, informes técnicos, tesis, etc.).
- Revisión de Mapas Estructurales e Isópacos del área de estudio.
- Recopilación de registros eléctricos y Rayos Gama (GR) de los pozos ubicados en el área de estudio.
- Migración de toda la data recopilada (coordenadas UTM de los pozos, desviaciones, topes estratigráficos, profundidades, etc) al paquete computarizado Geography Discovery. de la plataforma Landmark.

Para la realización de la caracterización Estratigráfica se contó con la ayuda del paquete computarizado Geography Discovery de la plataforma Landmark, utilizado para el modelado de yacimientos, por medio de los módulos X- Section, PrizM y Geotlas.

2.1.2. Validación de datos de pozos.

Los pozos utilizados para el desarrollo de este estudio disponen de registros convencionales registros especiales, tales como Registros de Gamma Ray Espectral, Resonancia Magnética, Registros de Imagen, representando esto una gran ventaja para su evaluación, al permitir analizar, interpretar e integrar eficazmente la información, logrando así una acertada caracterización de los yacimientos asociados.

Para el desarrollo del estudio se utilizaron 76 pozos perforados, de los cuales permanecen activos 69 en el área de Bloque III, para la elaboración de las secciones litoestratigráficas y estructurales con la finalidad de obtener una visión más clara de la continuidad y comportamiento en el subsuelo de las unidades sedimentarias, así como de los rasgos y patrones estructurales que determinan la configuración actual de la zona. En la Tabla 2.1, se presenta el listado de los pozos empleados, puntualizando sus respectivas coordenadas UTM.

En la actualidad el Bloque III no cuenta con el estudio de núcleo que constituye la

infor

maci

ón

más

apro

xima

da a

condi

cione

30

s

las

Pozo	Coordenad	las UTM	Pozo	Coordenadas UTM			
1 020	Norte	Este	1 020	Norte	Este		
005 1UD 5 0	1129392,8	192173,5	005 1UD 480 0	1129686,5	191323,2		
005 1UD 46 0	1129541,2	192144,5	005 1UD 521 0	1130175,1	192280,8		
005 1UD 47 0	1129339,8	192308,8	005 1UD 539 0	1130456,6	190827,1		
005 1UD 48 0	1129290,7	192053,5	005 1UD 562 0	1130273,5	191997,1		
005 1UD 105 0	1129000,1	193308,7	005 1UD 566 0	1130175,7	190692,1		
005 1UD 117 0	1130863,5	192669,3	005 1UD 567 0	1131256,1	192337,9		
005 1UD 123 0	1129784,2	191043,8	005 1UD 569 0	1130666,4	192451,2		
005 1UD 124 0	1128212,5	192399,8	005 1UD 570 Y	1128730,3	192345,7		
005 1UD 127 0	1129001,7	191703,3	005 1UD 576 0	1129880,2	192337,4		
005 1UD 127 A	1129001,7	191703,3	005 1UD 584 0	1129182,3	193000,9		
005 1UD 156 0	1129590,3	191586,9	005 1UD 584 1	1129182,3	193000,9		
005 1UD 158 0	1128407,8	191817,4	005 1UD 590 Y	1130695,9	192366,1		
005 1UD 158 A	1128407,8	191817,4	005 1UD 592 Y	1129693,7	191843,7		
005 1UD 162 0	1128801,4	192268,3	005 1UD 593 Y	1131203,4	191581,2		
005 1UD 166 0	1130161,9	191500	005 1UD 597 Y	1132052,4	191390,7		
005 1UD 181 0	1129182,5	192723,2	005 1UD 606 0	1130076,7	192564,4		
005 1UD 186 0	1131742	191699,3	005 1UD 606 1	1130076,9	192574		
005 1UD 192 0	1130370,3	192492	005 1UD 607 Y	1131855,7	191958		

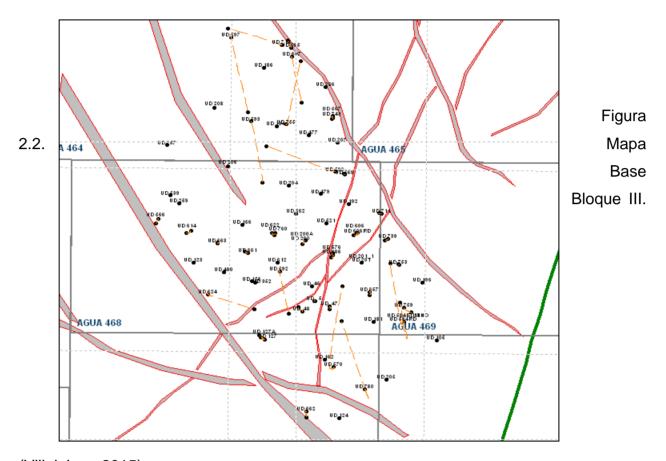
reales de las diferentes formaciones y su disposición en la secuencia sedimentaria, sin embargo se correlaciona con núcleos de los Bloques vecinos para obtener un resultado más acertado.

.

005 1UD 194 0	1131153,8	191815,5	005 1UD 612 0	1129782,2	191826,7
005 1UD 196 0	1129576,8	193176,3	005 1UD 614 0	1130077,3	190975,7
005 1UD 200 0	1129968,4	192054	005 1UD 622 0	1130077,4	191770,1
005 1UD 200 A	1129968,4	192054	005 1UD 624 Y	1129458,1	191174,1
005 1UD 201 0	1129778,9	192609,3	005 1UD 626 Y	1132032,6	191924
005 1UD 201 1	1129778,9	192609,3	005 1UD 657 0	1129482,9	192685,8
005 1UD 204 0	1130560,7	191928,6	005 1UD 661 0	1129879,7	191550,7
005 1UD 205 0	1128599,7	192838,9	005 1UD 662 0	1128282,5	192092,2
005 1UD 206 0	1130754,3	191360,4	005 1UD 663 0	1129978	191267
005 1UD 207 0	1130988,6	192386,3	005 1UD 685 1	1131943,5	191950,2
005 1UD 208 0	1131341,7	191234,1	005 1UD 686 1	1129855,6	192337,3
005 1UD 254 0	1132339,9	191593,3	005 1UD 711 1	1130271,2	192799,1
005 1UD 257 0	1130964,6	190796,5	005 1UD 714 1	1131975,1	191863,3
005 1UD 259 0	1130376,7	190906,3	005 1UD 739 1	1130019	192857
005 1UD 286 0	1131550,9	192271,8	005 1UD 743 1	1131236,1	192337,9
005 1UD 352 0	1129580,8	191613,1	005 1UD 753 1	1129759,1	192957
005 1UD 454 0	1129487,6	191088,9	005 1UD 755 1	1131173,9	191910,8
005 1UD 477 0	1131064	192117,4	005 1UD 759 1	1129323,3	193006,3
005 1UD 478 0	1129882,9	190755,4	005 1UD 760 1	1130071,8	191797,2
005 1UD 479 0	1130471,7	192230,3	005 1UD 780 1	1128503,6	192642,5

Tabla 2.1. Listado de Pozos empleados. (Villalobos, 2015)

2.1.3. Análisis e interpretación de registros convencionales y especiales


Para la realización del presente trabajo se emplearon registros convencionales, como los registros GR y SP, de resistividad, densidad neutrón, registros de buzamiento y caliper;

así como registros especiales, entre ellos registros de Gamma Ray Espectral, Registros de Imagen y de Resonancia Magnética.

El análisis de estos registros especiales junto a la información que puede extraerse de los registros convencionales, representa una excelente herramienta para el desarrollo del trabajo, permitiendo validar y mejorar la calidad de la interpretación efectuada en la descripción de núcleo y correlaciones estratigráficas.

2.1.4. Elaboración del Mapa Base

Con los datos de los pozos coordenadas (X, Y) en UTM, se dispuso a cargar esta información en la aplicación "WELL BASE" del software DISCOVERY, se elaboró el mapa base a escala 1:30.000, en donde se observa la distribución espacial de los pozos (Figura 2.2), y sobre el cual se realizará el mallado de las secciones estratigráficas y estructurales, además de toda la información resultante del estudio, para finalmente elaborar los mapas estructurales, de facies y de isopropiedades. La tabla 1 muestra el listado de los 76 pozos estudiados en el Bloque III.

(Villalobos, 2015)

2.1.5. Definición y Correlación de los Marcadores Estratigráficos

En el área de Urdaneta se tienen establecido los topes oficiales que corresponden a las formaciones Misoa (BXS/D) e Icotea, que han sido denominados como parte del yacimiento Urdaneta 01, dichos topes están basados en criterios litoestratigráficos

Partiendo de la información conocida, se seleccionaron varios pozos, se procedió a dividir la secuencia sedimentaria en varias zonas a partir de la identificación de los marcadores estratigráficos mas distintivos, en este caso un lente lutítico ("lutita mn87")

guía"), precisando así los límites entre las secciones: B-X-S/D Superior y B-X-S/D Inferior, y subdividiéndolas en varias subunidades (B-31, B-46, B-45), las cuales fueron correlacionados a partir del análisis de los patrones de electrofacies evidenciados por los registros Gamma Ray o Potencial Espontáneo según el caso, con la intención de reconocer y agrupar las unidades equivalentes tanto en tiempo, como en edad y posición estratigráfica.

2.1.6. Elaboración de Secciones Estratigráficas

Con la interpretación de los marcadores y la correlación de los pozos se procede a realizar las secciones litoestratigráficas que permiten observar la disposición, variación y continuidad lateral y vertical de la secuencia en el subsuelo teniendo como resultado la sección tipo que incluye los pozos UD-208, UD-206, UD-166, UD352, UD-162 y UD-205, en virtud de ser considerados representativos del área, en la Formación Misoa. En la Figura 2.3 se muestra la sección tipo seleccionada, señalando los marcadores estratigráficos definidos para el estudio.

A partir de las correlaciones estratigráficas se procedió a la identificación de unidades sedimentarias (zonas), las cuales están separadas por marcadores estratigráficos los cuales representan esencialmente líneas de tiempo.

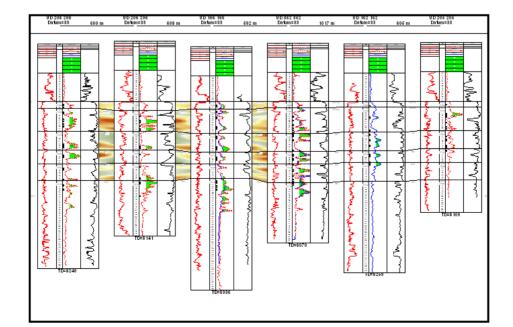


Figura 2.3. Sección Tipo del área de estudio. (Villalobos, 2015)

Luego de seleccionar los pozos de interés y establecer los marcadores estratigráficos, se trazó sobre el mapa base un mallado constituido por seis (6) líneas de sección en dirección SO-NE y tres (3) en dirección NO-SE, definidas de acuerdo a la distribución espacial de los pozos, con el propósito de evaluar la continuidad de las facies y unidades litológicas, y así tener una visión global del comportamiento y disposición de las mismas en el subsuelo. En la Figura 2.4 se muestra el mallado de secciones estratigráficas establecido.

Las secciones fueron elaboradas mediante la aplicación Xsection de la Plataforma Discovery GeoGraphix, a partir de la cual se adquiere la información digital de cada pozo (curvas, profundidades, desviaciones, intervalos cañoneados, etc.), logrando obtener una representación gráfica final de cada sección planteada en el mallado

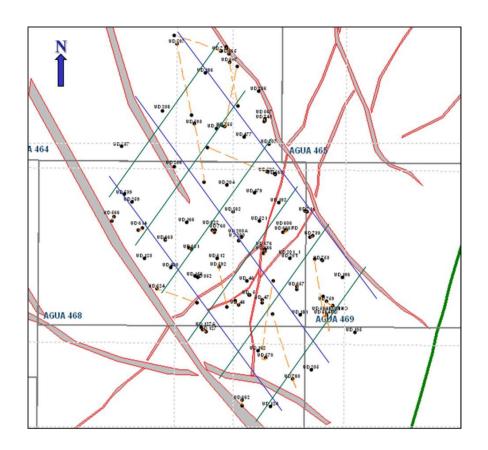


Figura 2.4. Mapa Base con el Mallado de Secciones Estratigráficas. De color Azul las correlaciones en dirección SE-NO y de color Verde las correlaciones en dirección SO-NE. (Villalobos, 2015)

2.1.7. Elaboración de Mapas de Isopropiedades

Para generar los mapas de isopropropiedades se utilizo el programa GeoGraphix Discovery específicamente la aplicación Geoatlas. Estos mapas fueron elaborados con los datos provenientes de las evaluaciones realizadas en el área de estudio (sumarios), tales como los espesores de Arena Neta Total (ANT), Arena Neta Petrolífera (ANP), Porosidad (Φ), Permeabilidad (K), Volumen de Arcilla (V_{sh}) y Saturación de Agua (S_{w}).

La eficiente definición de las parasecuencias que conforman un yacimiento es de gran importancia en la determinación de la geometría y arquitectura interna del mismo, y esto a su vez es clave en la comprensión del grado de heterogeneidad del yacimiento, definiendo las zonas de mayor o menor prospectividad.

CAPÍTULO III

ANALISIS Y EVALUACION DE LOS MODELOS ESTRATIGRAFICOS DEL YACIMIENTO URD 01 EN LAS ARENAS SUPERIORES DEL BLOQUE III.

3.1. Introducción.

En el siguiente capítulo se brinda un análisis y evaluación de los modelos estratigráficos del yacimiento URD 01 donde confecciona los mapas estructurales, de isopropiedades de las arenas superiores del bloque III

Los mapas anteriormente señalados nos brindan información acerca de la estructura, los cambios de facies y depositación, permitiendo conocer las arenas mas prospectiva en la extracción del crudo.

3.1.1. Los topes de las diferentes subunidades presentes en las arenas superiores de Formación Misoa de Edad Eoceno.

La revisión de los topes de las diferentes subunidades presentes en las arenas superiores de la formación Misoa B indican que es un intervalo rico en arena altamente heterogénea, esta heterogeneidad compleja se debe principalmente a los cambios de facies verticales y laterales. Generalmente, la arenisca de la formación Icotea del Oligoceno onlaps una superficie erosional mayor, la Discordancia Eoceno, y se engruesa gradualmente hacia el suroeste a través del campo. La Misoa B3 (el intervalo más elevado, preservado localmente en la unidad de la Misoa B), a la inversa, se adelgaza hacia el suroeste debido a la truncación erosional por debajo de la Discordancia Eoceno.

La STA (System Technology Associates, Inc) diseñó una nomenclatura estratigráfica la cual está estrechamente ligada a la nomenclatura que ha sido usada históricamente en la Cuenca de Maracaibo por PDVSA. La actual nomenclatura estratigráfica según lo define STA puede ser vista en la Figura 3.1.

Los intervalos mayores de la Misoa B, desde la cima hasta la base, son nombrados B3 hasta B8. La base de B8 se considera como la base de la Misoa B. STA interpretó hasta 20 superficies (17 dentro del intervalo de la Misoa B, MFS La Rosa, Icotea y Disc. Eoceno) en todos los pozos en el campo que tenían registros utilizables.

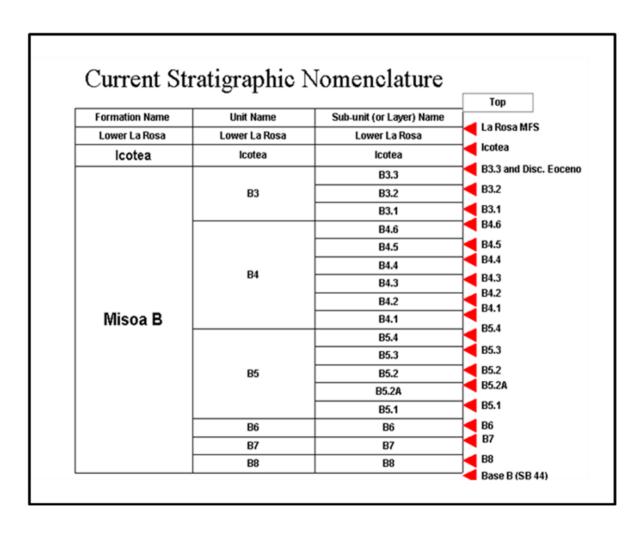


Figura 3.1 Nomenclatura Estratigráfica Actual.

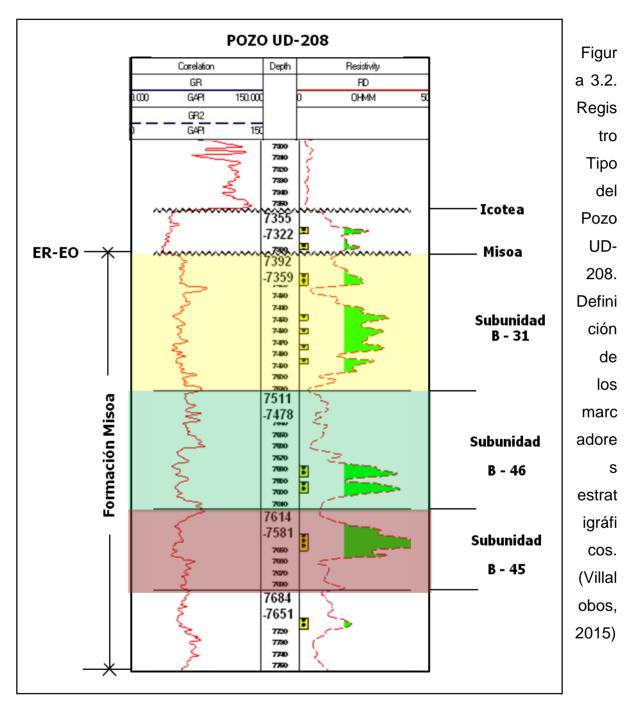
En contraste, las correlaciones estratigráficas dentro del intervalo de la Misoa B realizadas en la presente investigación son marcadamente diferentes de aquellas en el estudio la STA. Se reinterpretó la estratigrafía de la Misoa B a desde la Discordancia Eoceno, tomando en cuenta solo la subunidades superiores: B32, B31, B46 y B45. Cabe destacar que el intervalo B32 se encuentra parcialmente erosionado y no es representativo por sí solo, por lo tanto se unió a la subunidad B31.

ТОРЕ	TOPES INTERPRETADOS POR Carideli Villalobos							TOPES ORIGINALES DE LA STA				
POZOS UD	TOPES CARIDELI	FUENTE	MD	TVD	Subsea	TOPES STA ORIG.	MD	TVD	SUBSEA	MD		
5	MISOA	PDVSA	7271	7270	-7237	MISOA						
5	B31	STA	7353	7353	-7320	B31	7426	7426	-7393	-73		
5	B46	STA	7432	7431	-7398	B46	7512	7512	-7479	-80		
5	B45	STA	7527	7527	-7494	B45	7585	7585	-7552	-58		
46	MISOA	PDVSA	7241	7241	-7224	MISOA						
46	B31	STA	7330	7330	-7313	B31	7389	7389	-7372	-60		
46	B46	STA	7403	7403	-7386	B46	7489	7489	-7472	-86		
46	B45	STA	7519	7519	-7502	B45	7554	7554	-7537	-35		
47	MISOA	PDVSA	7261	7259	-7242	MISOA						
47	B31	STA	7333	7331	-7314	B31	7402	7400	-7383	-69		
47	B46	STA	7411	7409	-7392	B46	7501	7499	-7482	-90		
47	B45	STA	7504	7501	-7484	B45	7564	7562	-7545	-60		
48	B31	STA	7391	7386	-7369	B31						
48	B46	STA	7447	7442	-7425	B46						
48	B45	STA	7545	7541	-7524	B45						
105	MISOA	PDVSA	7500	7500	-7467	MISOA						
105	B31	STA	7576	7576	-7543	B31	7631	7631	-7598	-55		

,		ı	1	•	1	1	i			
105	B46	STA	7636	7636	-7603	B46	7732	7732	-7699	-96
105	B45	STA	7731	7731	-7698	B45	7795	7795	-7762	-64
123	MISOA	PDVSA	7489	7489	-7456	MISOA				
123	B31	STA	7611	7611	-7578	B31	7607	7607	-7574	5
123	B46	STA	7668	7668	-7635	B46	7704	7704	-7671	-36
123	B45	STA	7767	7767	-7734	B45	7778	7778	-7745	-11
124	MISOA	PDVSA	7683	7683	-7650	MISOA				
124	B31	STA	7747	7747	-7714	B31	7807	7807	-7774	-60
124	B46	STA	7811	7811	-7778	B46	7900	7900	-7867	-90
124	B45	STA	7927	7927	-7894	B45	7965	7965	-7932	-38
127	MISOA	PDVSA	7409	7401	-7368	MISOA				
127	B31	STA	7503	7488	-7455	B31	7552	7533	-7500	-49
127	B46	STA	7572	7552	-7519	B46	7651	7624	-7591	-78
127	B45	STA	7638	7612	-7579	B45	7713	7681	-7648	-75
127A	B31	STA	7507	7499	-7466	B31				
127A	B46	STA	7596	7579	-7546	B46				
162	MISOA	PDVSA	7382	7382	-7349	MISOA				
162	B31	STA	7446	7446	-7413	B31	7513	7513	-7480	-67
162	B46	STA	7515	7515	-7482	B46	7613	7613	-7580	-97
162	B45	STA	7598	7598	-7565	B45	7676	7676	-7643	-79
166	MISOA	PDVSA	7375	7375	-7342	MISOA				
166	B31	STA	7459	7459	-7426	B31	7506	7506	-7473	-47
166	B46	STA	7530	7530	-7497	B46	7604	7604	-7571	-73
166	B45	STA	7605	7605	-7572	B45	7669	7669	-7636	-64
181	MISOA	PDVSA	7318	7318	-7285	MISOA				-
181	B31	STA	7409	7409	-7376	B31	7435	7435	-7402	-26
181	B46	STA	7470	7470	-7437	B46	7546	7546	-7513	-76
181	B45	STA	7543	7543	-7510	B45	7614	7614	-7581	-71
186	MISOA	PDVSA	7323	7323	-7290	MISOA				
186	B31	STA	7435	7435	-7402	B31	7443	7443	-7410	-8
186	B46	STA	7518	7518	-7485	B46	7537	7537	-7504	-19
186	B45	STA	7614	7614	-7581	B45	7608	7608	-7575	6
192	MISOA	PDVSA	7207	7207	-7174	MISOA				
192	B31	STA	7261	7261	-7228	B31	7334	7334	-7301	-72
192	B46	STA	7314	7314	-7281	B46	7446	7446	-7413	-132
192	B45	STA	7396	7396	-7363	B45	7530	7530	-7497	-134
194	MISOA	PDVSA	7299	7299	-7266	MISOA				
194	B31	STA	7420	7420	-7387	B31	7421	7421	-7388	0
194	B46	STA	7514	7514	-7481	B46	7524	7524	-7491	-10
194	B45	STA	7601	7601	-7568	B45	7594	7594	-7561	7
196	MISOA	PDVSA	7293	7293	-7260	MISOA				<u> </u>
196	B31	STA	7376	7376	-7343	B31	7419	7419	-7386	-43
196	B46	STA	7429	7429	-7396	B46	7523	7523	-7490	-94

196	B45	STA	7501	7501	-7468	B45	7586	7586	-7553	-84
200	B31	STA	7371	7371	-7338	B31				
200	B46	STA	7433	7433	-7400	B46				
200	B45	STA	7503	7503	-7470	B45				
200A	MISOA	PDVSA	7262	7260	-7227	MISOA				
200A	B31	STA	7377	7375	-7342	B31	7400	7398	-7365	-23
200A	B46	STA	7440	7438	-7405	B46	7502	7500	-7467	-62
200A	B45	STA	7511	7509	-7476	B45	7573	7571	-7538	-62
201	B31	STA	7268	7268	-7235	B31				
201	B46	STA	7284	7284	-7251	B46				
201	B45	STA	7376	7376	-7343	B45				
201_1	MISOA	PDVSA	7196	7196	-7151	MISOA				
201_1	B46	STA	7296	7295	-7250	B46	7328	7328	-7283	-32
201_1	B31	STA	7309	7308	-7263	B31	7418	7418	-7373	-110
201_1	B45	STA	7391	7391	-7346	B45	7482	7482	-7437	-91
204	B31	STA	7440	7440	-7407	B31				
204	B46	STA	7512	7512	-7479	B46				
204	B45	STA	7605	7605	-7572	B45				
205	MISOA	PDVSA	7543	7543	-7510	MISOA				
205	B31	STA	7607	7607	-7574	B31	7668	7668	-7635	-60
205	B46	STA	7690	7690	-7657	B46	7764	7764	-7731	-74
205	B45	STA	7794	7794	-7761	B45	7835	7835	-7802	-41
206	MISOA	PDVSA	7476	7476	-7443	MISOA				
206	B31	STA	7596	7596	-7563	B31	7587	7587	-7554	9
206	B46	STA	7661	7661	-7628	B46	7686	7686	-7653	-25
206	B45	STA	7746	7746	-7713	B45	7757	7757	-7724	-11
207	MISOA	PDVSA	7158	7158	-7125	MISOA				
207	B31	STA	7251	7251	-7218	B31	7275	7275	-7242	-24
207	B46	STA	7324	7324	-7291	B46	7377	7377	-7344	-53
207	B45	STA	7398	7398	-7365	B45	7448	7448	-7415	-50
208	MISOA	PDVSA	7392	7392	-7359	MISOA				
208	B31	STA	7510	7510	-7477	B31	7511	7511	-7478	-1
208	B46	STA	7626	7626	-7593	B46	7614	7614	-7581	12
208	B45	STA	7702	7702	-7669	B45	7684	7684	-7651	18
254	MISOA	PDVSA	7306	7306	-7273	MISOA				
254	B31	STA	7381	7381	-7348	B31	7415	7415	-7382	-34
254	B46	STA	7456	7456	-7423	B46	7512	7512	-7479	-55
254	B45	STA	7527	7527	-7494	B45	7587	7587	-7554	-60
257	MISOA	PDVSA	7580	7580	-7547	MISOA				
257	B31	STA	7705	7705	-7672	B31	7704	7704	-7671	1
257	B46	STA	7764	7764	-7731	B46	7800	7800	-7767	-37
257	B45	STA	7838	7838	-7805	B45	7856	7856	-7823	-17
259	MISOA	PDVSA	7523	7523	-7490	MISOA				

					_	_				
259	B31	STA	7657	7657	-7624	B31	7647	7647	-7614	10
259	B46	STA	7731	7731	-7698	B46	7730	7730	-7697	1
259	B45	STA	7795	7795	-7762	B45	7794	7794	-7761	1
286	MISOA	PDVSA	7188	7188	-7155	MISOA				
286	B31	STA	7323	7323	-7290	B31	7310	7310	-7277	13
286	B46	STA	7390	7390	-7357	B46	7411	7411	-7378	-21
286	B45	STA	7436	7436	-7403	B45	7482	7482	-7449	-45
352	MISOA	PDVSA	7354	7354	-7321	MISOA				
352	B31	STA	7453	7453	-7420	B31	7490	7490	-7457	-36
352	B46	STA	7477	7477	-7444	B46	7586	7586	-7553	-109
352	B45	STA	7568	7568	-7535	B45	7651	7651	-7618	-83
477	MISOA	PDVSA	7225	7225	-7192	MISOA				
477	B31	STA	7294	7294	-7261	B31	7346	7346	-7313	-52
477	B46	STA	7358	7358	-7325	B46	7460	7460	-7427	-102
477	B45	STA	7415	7415	-7382	B45	7521	7521	-7488	-106
479	MISOA	PDVSA	7220	7220	-7187	MISOA				
479	B31	STA	7336	7336	-7303	B31	7346	7346	-7313	-10
479	B46	STA	7420	7420	-7387	B46	7458	7458	-7425	-39
479	B45	STA	7510	7510	-7477	B45	7520	7520	-7487	-10
480	MISOA	PDVSA	7438	7438	-7405	MISOA				
480	B31	STA	7537	7537	-7504	B31	7569	7569	-7536	-32
480	B46	STA	7593	7593	-7560	B46	7668	7668	-7635	-75
480	B45	STA	7667	7667	-7634	B45	7738	7738	-7705	-71
521	MISOA	PDVSA	7216	7216	-7183	MISOA				
521	B31	STA	7300	7300	-7267	B31	7332	7332	-7299	-32
521	B46	STA	7377	7377	-7344	B46	7428	7428	-7395	-51
521	B45	STA	7450	7450	-7417	B45	7491	7491	-7458	-41
539	MISOA	PDVSA	7559	7559	-7526	MISOA				
539	B31	STA	7681	7681	-7648	B31	7681	7681	-7648	0
539	B46	STA	7753	7753	-7720	B46	7766	7766	-7733	-13
539	B45	STA	7835	7835	-7802	B45	7830	7830	-7797	5
562	MISOA	PDVSA	7257	7257	-7224	MISOA				
562	B31	STA	7341	7341	-7308	B31	7388	7388	-7355	-46
562	B46	STA	7404	7404	-7371	B46	7503	7503	-7470	-99
562	B45	STA	7464	7464	-7431	B45	7563	7563	-7530	-99
566	MISOA	PDVSA	7577	7533	-7512	MISOA				
566	B31	STA	7676	7632	-7611	B31	7694	7650	-7629	-18
566	B46	STA	7757	7713	-7692	B46	7783	7739	-7718	-26
566	B45	STA	7827	7783	-7762	B45	7835	7791	-7770	-8
567	MISOA	PDVSA	7150	7150	-7117	MISOA				
567	B31	STA	7250	7250	-7217	B31	7275	7275	-7242	-25
567	B46	STA	7334	7334	-7301	B46	7378	7378	-7345	-44
567	B45	STA	7401	7401	-7368	B45	7446	7446	-7413	-45


569	B31	STA	7221	7221	-7188	B31				
569	B46	STA	7276	7276	-7243	B46				
569	B45	STA	7349	7349	-7316	B45				
570	MISOA	PDVSA	7743	7351	-7305	MISOA				
570	B31	STA	8192	7423	-7377	B31				
576	MISOA	PDVSA	7197	7196	-7163	MISOA				
576	B31	STA	7312	7311	-7278	B31	7322	7320	-7287	-10
576	B46	STA	7392	7391	-7358	B46	7431	7429	-7396	-38
576	B45	STA	7485	7484	-7451	B45	7496	7495	-7462	-10
584RD	MISOA	PDVSA	7664	7323	-7290	MISOA				
584RD	B31	STA	7989	7411	-7378	B31	8157	7451	-7418	-168
584RD	B46	STA	8325	7480	-7447	B46	9032	7547	-7514	-707
590	MISOA	PDVSA	7439	7218	-7158	MISOA				
590	B31	STA	7638	7324	-7264	B31	7641	7325	-7265	-3
590	B46	STA	7784	7393	-7333	B46	7898	7440	-7380	-114
590	B45	STA	7966	7466	-7406	B45	8120	7514	-7454	-154
592	MISOA	PDVSA	7613	7317	-7286	MISOA				
592	B31	STA	7903	7414	-7383	B31	7960	7430	-7399	-58
592	B46	STA	8112	7471	-7440	B46	8462	7551	-7520	-350
592	B45	STA	8499	7558	-7527	B45				
593	MISOA	PDVSA	7544	7322	-7289	MISOA				
593	B31	STA	7802	7459	-7426	B31	7761	7438	-7405	41
593	B46	STA	8005	7545	-7512	B46	7993	7541	-7508	12
593	B45	STA	8300	7613	-7580	B45	8317	7616	-7583	-17
597	B31	STA	8863	7504	-7458	B31				
597	B46	STA	9427	7598	-7552	B46				
606	MISOA	PDVSA	7147	7144	-7111	MISOA				
606	B31	STA	7256	7253	-7220	B31	7255	7252	-7219	1
606	B46	STA	7318	7315	-7282	B46	7357	7353	-7320	-38
606	B45	STA	7397	7394	-7361	B45	7430	7427	-7394	-33
606RD	MISOA	PDVSA	7163	7160	-7115	MISOA				
606RD	B31	STA	7276	7271	-7226	B31	7269	7264	-7219	7
606RD	B46	STA	7332	7326	-7281	B46	7372	7366	-7321	-40
606RD	B45	STA	7414	7407	-7362	B45	7447	7439	-7394	-33
607	MISOA	PDVSA	7422	7242	-7196	MISOA				
607	B31	STA	7663	7333	-7287	B31	7710	7351	-7305	-47
607	B46	STA	7823	7397	-7351	B46	7931	7441	-7395	-109
607	B45	STA	8006	7472	-7426	B45	8099	7510	-7464	-92
612	MISOA	PDVSA	7286	7286	-7253	MISOA				
612	B31	STA	7368	7368	-7335	B31	7401	7401	-7368	-32
612	B46	STA	7447	7447	-7414	B46	7526	7526	-7493	-79
612	B45	STA	7531	7531	-7498	B45	7611	7611	-7578	-80
614	MISOA	PDVSA	7502	7500	-7443	MISOA				

614	B31	STA	7598	7595	-7538	B31	7620	7617	-7560	-22
614	B46	STA	7670	7668	-7611	B46	7714	7712	-7655	-44
614	B45	STA	7755	7753	-7696	B45	7793	7790	-7733	-38
622	B31	STA	7395	7394	-7348	B31				
622	B46	STA	7453	7452	-7406	B46				
622	B45	STA	7527	7525	-7479	B45				
624	MISOA	PDVSA	7715	7455	-7422	MISOA				
624	B31	STA	7814	7510	-7477	B31	7967	7586	-7553	-153
624	B46	STA	7901	7557	-7524	B46	8403	7690	-7657	-501
624	B45	STA	8162	7642	-7609	B45				
657	MISOA	PDVSA	7238	7236	-7190	MISOA				
657	B31	STA	7331	7330	-7284	B31	7375	7373	-7327	-44
657	B46	STA	7397	7395	-7349	B46	7479	7478	-7432	-82
657	B45	STA	7478	7476	-7430	B45	7562	7560	-7514	-84
661	MISOA	PDVSA	7370	7368	-7322	MISOA				
661	B31	STA	7444	7442	-7396	B31	7503	7502	-7456	-59
661	B46	STA	7504	7502	-7456	B46	7604	7603	-7557	-101
661	B45	STA	7590	7588	-7542	B45	7676	7674	-7628	-86
662	MISOA	PDVSA	7677	7669	-7623	MISOA				
662	B31	STA	7747	7739	-7693	B31	7800	7792	-7746	-53
662	B46	STA	7800	7793	-7747	B46	7886	7878	-7832	-85
662	B45	STA	7912	7904	-7858	B45	7954	7946	-7900	-43
663	MISOA	PDVSA	7451	7449	-7403	MISOA				
663	B31	STA	7554	7552	-7506	B31	7589	7587	-7541	-35
663	B46	STA	7624	7622	-7576	B46	7686	7683	-7637	-61
663	B45	STA	7693	7691	-7645	B45	7751	7749	-7703	-58
685	MISOA	PDVSA	7222	7216	-7183	MISOA				
685	B31	STA	7321	7315	-7282	B31	7364	7358	-7325	-43
685	B46	STA	7394	7387	-7354	B46	7468	7461	-7428	-74
685	B45	STA	7468	7461	-7428	B45	7529	7523	-7490	-62
686	MISOA	PDVSA	7213	7211	-7178	MISOA				
686	B31	STA	7336	7334	-7301	B31	7323	7321	-7288	13
686	B46	STA	7398	7396	-7363	B46	7429	7428	-7395	-32
686	B45	STA	7497	7495	-7462	B45	7490	7488	-7455	7
711	MISOA	PDVSA	7139	7137	-7104	MISOA				
711	B31	STA	7218	7217	-7184	B31	7265	7264	-7231	-47
711	B46	STA	7275	7273	-7240	B46	7372	7370	-7337	-97
711	B45	STA	7346	7345	-7312	B45	7442	7441	-7408	-96
714	MISOA	PDVSA	7628	7292	-7258	MISOA				
714	B31	STA	7958	7415	-7381	B31	7943	7409	-7375	16
714	B46	STA	8170	7496	-7462	B46	8190	7504	-7470	-20
739	MISOA	PDVSA	7151	7149	-7104	MISOA				
739	B31	STA	7245	7243	-7198	B31	7276	7274	-7229	-31

739	B46	STA	7294	7292	-7247	B46	7375	7374	-7329	-81
739	B45	STA	7367	7365	-7320	B45	7443	7441	-7396	-76
743	MISOA	PDVSA	7162	7159	-7114	MISOA				
743	B31	STA	7256	7252	-7207	B31	7286	7283	-7238	-31
743	B46	STA	7337	7333	-7288	B46	7392	7389	-7344	-55
743	B45	STA	7413	7410	-7365	B45	7462	7458	-7413	-49
753	MISOA	PDVSA	7198	7198	-7165	MISOA				
753	B31	STA	7295	7294	-7261	B31	7321	7321	-7288	-26
753	B46	STA	7342	7341	-7308	B46	7431	7430	-7397	-89
753	B45	STA	7398	7398	-7365	B45	7493	7493	-7460	-96
755	MISOA	PDVSA	8008	7244	-7199	MISOA				
755	B31	STA	8638	7355	-7310	B31				
759	MISOA	PDVSA	7342	7322	-7289	MISOA				
759	MISOA	STA	7360	7340	-7307	MISOA				
759	B31	STA	7427	7407	-7374	B31	7472	7452	-7419	-45
759	B46	STA	7487	7467	-7434	B46	7571	7551	-7518	-84
759	B45	STA	7580	7560	-7527	B45	7636	7616	-7583	-56
760	MISOA	PDVSA	7305	7304	-7268	MISOA				
760	B31	STA	7398	7397	-7361	B31	7442	7440	-7404	-43
760	B46	STA	7464	7463	-7427	B46	7555	7553	-7517	-91
760	B45	STA	7534	7533	-7497	B45	7613	7612	-7576	-79
780	MISOA	PDVSA	8468	7363	-7330	MISOA				
780	B31	STA	9061	7423	-7390	B31				

Tabla 3.1. Topes interpretados vs topes originales.(Villalobos, 2015)

Con el propósito de determinar los topes estratigráficos de las unidades sedimentarias, así como los marcadores que pueden ser correlacionados a lo largo de todo el área, se procedió a definir inicialmente en el registro del pozo UD-208 las unidades sedimentaria mayores, delimitadas por los cuellos lutíticos representativos y que pueden ser correlacionados con el resto de los pozos. De las nueve secciones litoestratigráficas elaboradas, seis se realizaron en dirección SO-NE, tres con dirección NO-SE.

3.1.2. Cambios de facies, continuidad y tendencia de las arenas en el área de estudio.

En el presente, se reconocieron cuales son las respuestas de los perfiles eléctricos y de resistividad en la secuencia de interés, esto es, la identificación de electrofacies. Cada perfil de pozo da en mayor o menor grado alguna información acerca de la composición mineralógica, la textura y las estructuras sedimentarias, aún cuando esta información esté algunas veces implícita.

Los patrones de las curvas se ajustan a distintos medios sedimentarios, por lo que, no son exclusivos de un ambiente sedimentario en particular, sin embargo el empleo de estas en conjunción con un modelo de facies resulta en la obtención de una acertada interpretación de sucesiones de facies y por ende de los eventos asociados a estas. (Figura 3.3)

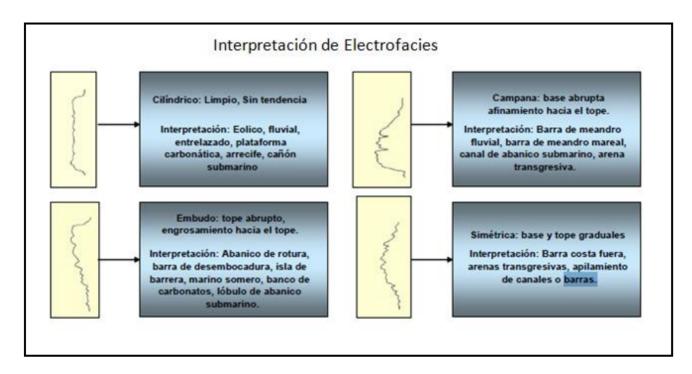


Figura. 3.3. Patrones de Electrofacies. (Modificado de Walter y James, 1992).

La formación Misoa B fue depositada principalmente por deltas fluvialmente dominados. Esta interpretación fue basada primariamente en los estudios de núcleo de nueve pozos dentro del Campo de Urdaneta, y es apoyada por las relaciones de facies y la compleja heterogeneidad del yacimiento observada durante los análisis de la STA. Misoa B en el Campo Urdaneta está compuesta de una serie de secuencias deltaicas, fluvialmente dominadas, amontonadas, producidas por múltiples episodios de avance y retiro deltaico. Este modelo de depósito explica la naturaleza de alta heterogeneidad de la esta formación.

Cada delta comprende tres tipos de ambientes: la llanura deltaica, el frente deltaico y el prodelta, con características propias, representadas por la integración de evidencias como estructuras sedimentarias, litología, asociaciones de facies, de icnofósiles. Actualmente se reconocen tres tipos de deltas principalmente. El intervalo de interés de este estudio se sitúa ambientalmente en el intervalo comprendido entre el frente deltaico y la llanura de inundación.

Por medio de la interpretación de los mapas de electrofacies en conjunto con el proceso de correlación de pozos, se observa hacia las zonas NE y S la presencia de Barras de desembocaduras y canales distributarios que son asociados a frentes deltaicos.

Las formas y espesores de las barras son variables ya que estos dependen de las olas del frente deltaico y de la energía de la corriente en los distributarios. La secuencia es vertical de contacto abrupto en el tope y pendiente hacia la base que indica el incremento de la granulometría y disminución de la arcillosidad hacia el tope. Las características petrofísicas mejoran hacia el tope del cuerpo de arena.

Mientras que en los canales se observa superposición de secuencia de canal, con conglomerados y arenas. La base de estos cuerpos es erosiva y en la sección vertical muestran estructuras de afinamiento de granos. (Figuras 3.4, 3.5 y 3.6)

En dirección E y pequeñas zonas en el área central se observan contactos gradacionales característicos a llanuras de inundación, donde que se depositan de sedimentos finos formándose así las lutitas.

Estas características se observan en las tres subunidades evaluadas del Bloque III a nivel de la formación Misoa, siendo esta un área que presenta zonas favorables para la explotación y recuperación de crudo.

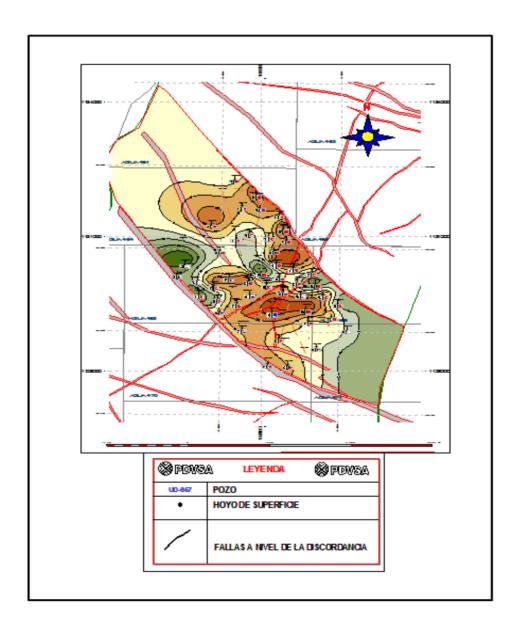


Figura 3.4. Mapa de ANT de la subunidad B31 del Bloque III. Yacimiento UD 01. (Villalobos, 2015)

Figura 3.5. Mapa de ANT de la subunidad B46 del Bloque III. Yacimiento UD 01. (Villalobos, 2015)

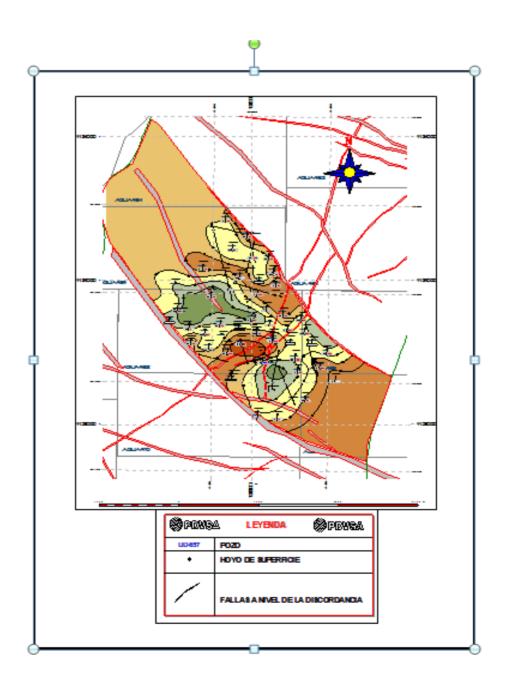


Figura 3.6. Mapa de ANT de la subunidad B45 del Bloque III. Yacimiento UD 01. (Villalobos, 2015)

3.1.3. Mapas estructurales a nivel de las sub unidades B31, B46 y B45 de la Formación Misoa.

Los mapas de contornos estructurales se elaboran una vez realizada las correlaciones de todos los pozos del área, se toma como base los topes obtenidos de dicha correlaciones, y se despliegan mediante la aplicación Discovery GeoGraphix y se procede a generar los mapas de contornos estructurales por cada subunidad para obtener una mejor visión de la estructura según la interpretación geológica. (Figura 3.7).

La elaboración de los mapas estructurales en las sub unidades B31, B46 y B45 de la formación Misoa indica una estructura anticlinal asimétrica, donde la Falla Urdaneta Oeste, es la falla principal de este sistema, en las unidades aparecen un conjunto de fallas secundarias que que responden a las deformaciones que se manifiestan a lo largo

de la falla principal. Es importante señalar como estos elementos geoestructurales conservan la tectónica del yacimiento Urdaneta 01 en un sentido longitudinal.

En los mapas estructurales B31, B46 y B45 aparecen diferentes intersecciones de fallas, que pueden generar cierres locales dentro del bloque, los que pueden catalogarse de posibles entrampamiento de hidrocarburos.

La zona 1 (tope de Misoa y base B31) comprende una estructura anticlinal, dividida principalmente en 3 áreas por una serie de fallas que forman una cresta en dirección S64W, con un buzamiento de 45 grados, en los flancos del norte de la zona las capas posen una dirección N45E y buzan 34 grados, al sur poseen la misma dirección con un buzamiento más inclinado de 75. Las zonas 2 y 3 son áreas subyacentes y tienden a ser similares a la zona 1, como se puede observar en la Figura 3.7.

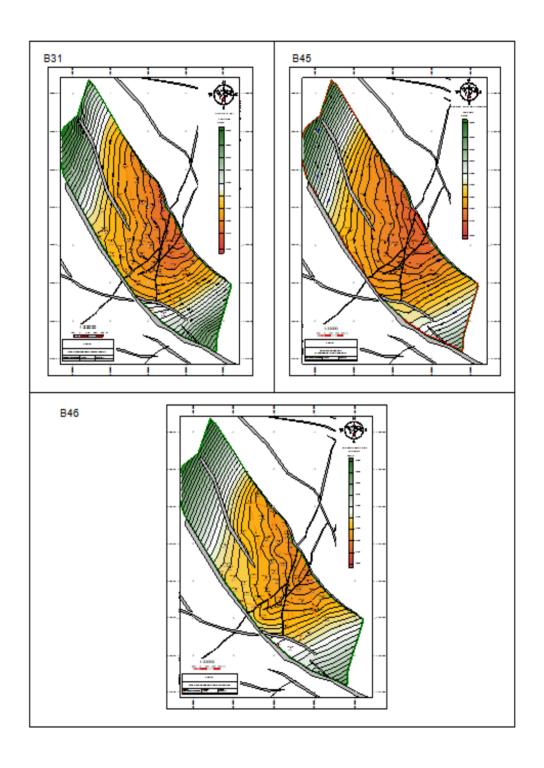
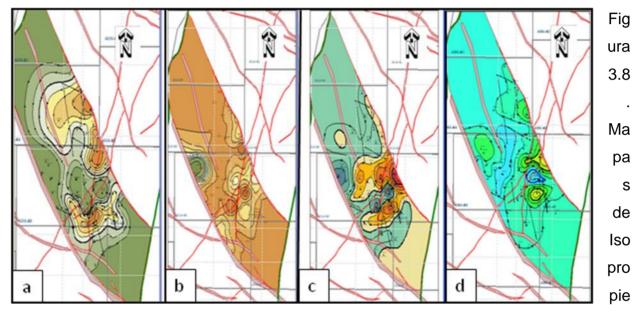



Figura 3.7. Mapas Estructurales de las subunidades superiores del Bloque III. Yacimiento URD 01. (Villalobos, 2015).

3.1.4. Análisis e interpretación de los Mapas de Isopropiedades a nivel de las subunidades B31, B46 y B45 de la Formación Misoa.

Interpretación de Zona 1 (Subunidad Tope Misoa - B31)

dades de las subunidades superiores del Bloque III. Yacimiento URD 01. a) ANP. b) Vsh. c) Permeabilidad. d) Porosidad. (Villalobos, 2015)

En el mapa de ANP (Figura 3.8) para la Zona 1 se puede apreciar hacia el NNE valores de 94´ de arenas netas petrolíferas, y al SSE de 109´, con un espesor promedio de 48´. Ubicándose estas como las aéreas más prospectivas y favorables.

La distribución de volumen de arcilla va desde 0.03 a 0.13, teniendo como valor promedio 0.09. Se observa un mayor volumen de arcilla hacia el NO y la zona central, y las áreas de menor contenido de arcilla se ubican hacia NNE y SSO, lo cual coincide con el valor de ANP.

La porosidad efectiva para la Zona 1, tiene valores que van desde 25% hasta 32%, siendo 26% el valor promedio de la misma. El mapa de porosidad efectiva para la formación en estudio, presenta una configuración similar al mapa de volumen de arcilla, en general hacia el NNE y SSO del Bloque se localiza la zona más favorable desde el punto de vista de porosidad.

El promedio de permeabilidad para la Zona 1 en el Bloque 3, es de 498mD, se observa al NNE y SSO áreas de mayor movilidad de fluido presentando un sistema conectado de espacios porosos favorables.

Interpretación de Zona 2 (Subunidad B31 - B46)

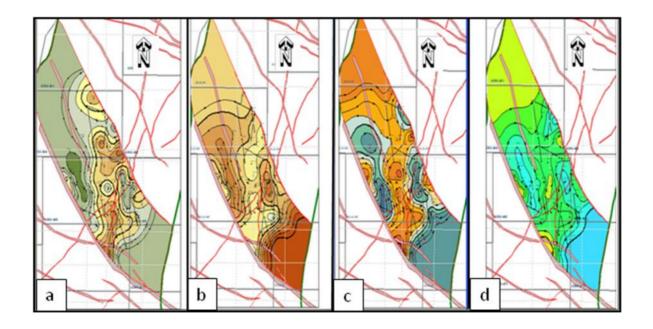
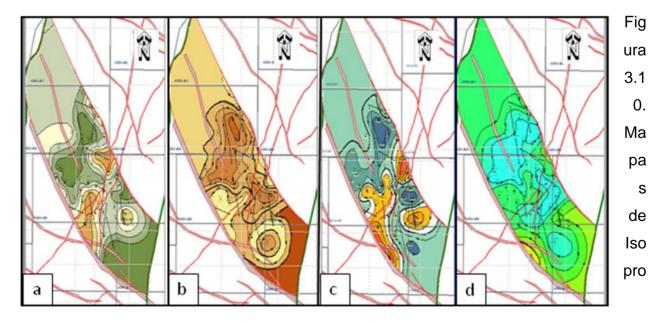


Figura 3.9. Mapas de Isopropiedades de las subunidades superiores del Bloque III. Yacimiento URD 01. a) ANP. b) Vsh. c) Permeabilidad. d) Porosidad. (Villalobos, 2015)


En el mapa de ANP (Figura 3.9) las áreas más prospectivas se observan hacia el NNE y S con valores de 85´ y 73´ respectivamente, con un espesor promedio de 42´.

El volumen de arcilla en esta zona va desde 0.07 a 0.15, con un valor promedio 0.09. Hacia el NO y la zona central existe un mayor volumen de arcilla y las áreas de menor contenido de arcilla se ubican hacia NNE y al S.

La porosidad efectiva, tiene valores que van desde 25% hasta 31%, siendo 26% el valor promedio de la misma, la zona más favorable desde el punto de vista de porosidad se localizan hacia el NNE y al S del Bloque.

Se observa al NNE y al S áreas de mayor movilidad de fluido presentando un sistema conectado de espacios porosos favorables, con un valor promedio de permeabilidad de 528mD.

Interpretación de Zona 3 (Subunidad B46 - B45)

piedades de las subunidades superiores del Bloque III. Yacimiento URD 01. a) ANP. b) Vsh. c) Permeabilidad. d) Porosidad. (Villalobos, 2015)

En todas las subunidades los mapas (Figura 3.10) presentan una configuración similar, hacia el NE se observan arenas prospectivas con valores de 56´ de arenas netas petrolíferas, y al SSO de 52´, con un espesor promedio de 23´. Es importante destacar la presencia de un pequeño paquete de arenas hacia SE con espesores de 53´.

La distribución de volumen de arcilla va desde 0.08 a 0.13, con un valor promedio 0.1. Se observa un mayor volumen de arcilla hacia el NNO y NO, y las áreas de menor contenido de arcilla se ubican hacia NE y SSO, lo cual coincide con el valor de ANP.

La porosidad efectiva tiene valores que van desde 26% hasta 31%, siendo 26% el valor promedio de la misma. El mapa de porosidad efectiva para la formación en estudio, presenta una configuración similar al mapa de volumen de arcilla, en general hacia el NE, SSO y SE del Bloque se localiza la zona más favorable desde el punto de vista de porosidad.

El promedio de permeabilidad es de 487mD, se observa áreas al NE, SSO y un pequeño paquete de arenas hacia SE con mayor movilidad de fluido presentando un sistema conectado de espacios porosos favorables.

Conclusiones del capítulo III

El análisis y evaluación de los modelos estratigráficos del yacimiento URD 01 dio como resultado una estructura anticlinal fallada, un ambiente depositacional característico Fluvial Deltaico y al relacionar los mapas de porosidad efectiva y permeabilidad en todas las subunidades, se observó que la relación es proporcional y los mismos sustentan que las zonas más prospectivas para el Bloque III se encuentran ubicadas principalmente hacia el NE y el área SO, con paquetes de areniscas en la zona central.

CONCLUSIONES

- De la interpretación de la estratigrafía de la Formación Misoa edad Eoceno según los topes de los diferentes sub unidades se concluye que existe diferencia en los espesores de los paquetes de los estratos de arenas en contraste con las correlaciones estratigráficas realizadas por el estudio de la STA.
- De los mapas de electrofacies en conjunto con el proceso de correlación de pozos, se observa hacia las zonas NE y S la presencia de Barras de desembocaduras y canales distributarios que son asociados a un ambiente depositacional Fluvial Deltaico el cual es favorable para la formación de hidrocarburos

- La elaboración de los mapas estructurales en las sub unidades B31, B46 y B45 de la formación Misoa indica una estructura anticlinal asimétrica, donde la Falla Urdaneta Oeste, es la falla principal de este sistema, en las unidades aparecen un conjunto de fallas secundarias que responden a las deformaciones que se manifiestan a lo largo de la falla principal. Es importante señalar como estos elementos geoestructurales permiten el entrampamiento y acumulación de hidrocarburos, lo que hace que la zona sea de gran interés económico y prospectivo.
- Al relacionar los mapas de Isopropiedades: Arena neta petrolífera, Volumen de arcilla, porosidad efectiva y permeabilidad en todas las subunidades, se observó que la relación es proporcional y los mismos sustentan que las zonas más prospectivas para el Bloque III se encuentran ubicadas principalmente hacia el NE y el área SO, con paquetes de estratos de areniscas en la zona central.

RECOMENDACIONES

 Adquisición de data, toma de núcleo, muestras de canal, a fin de realizar un modelo estratigráfico – sedimentológico integrado en el bloque III del Yacimiento Urdaneta 01, que comprendan la secuencia estratigráfica de la Formación Misoa.

BIBLIOGRAFÍA

Audemard F.E. and Audemard F.A. (2002) Structure of the Merida Andes, Venezuela: Relations with the South America-Caribbean Geodynamics interaction. Tectonophysics Vol. 345, p. 299-327

Audemard F.E. (1991) Tectonics of western Venezuela. Tesis. Rice University, EEUU, Houston TX, EEUU. 245 p.

Castillo M.V. and Mann P. (2006) Cretaceous to Holocene structural and stratigraphic development in south Lake Maracaibo, Venezuela, inferred from well and three-dimensional seismic data. American Association of Petroleum Geologists Bulletin, April 1, 2006; Vol. 90, no. 4, p. 529 - 565.

Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A. J., and Taborda, A., (1995), Basin development and tectonic history of the Llanos Basin, Eastern Cordillera and Middle Magdalena Valley, Colombia: American Association of Petroleum Geologists Bulletin, Vol. 79, p. 1421–1443.

Escalona A. and Mann P. (2006) "An overview of the petroleum system of Maracaibo basin". American Association of Petroleum Geologists Bulletin., Vol. 90, no. 4. p. 657-678.

Erlich, R.N. and Barrett, S.F., (1990). Cenozoic plate tectonic history of the northern Venezuela-Trinidad area. Tectonics, Vol. 9, p. 161-184.

Gallango O., Talukdar S. and Chin-A-Lien M. (1985). Características de los crudos marinos en la Cuenca de Maracaibo, Venezuela Occidental. Barquisimeto, Memorias del VI Congreso Geológico Venezolano, Tomo III, p. 1661-1693.

González de Juana C., Iturralde J.M. y Picard X. (1980). Geología de Venezuela y de sus Cuencas Petrolíferas: Caracas, Ediciones Foninves, 1031 p.

Lugo J. and Mann P. (1995) Jurassic-Eocene tectonic evolution of Maracaibo Basin, Venezuela. AAPG. Mem. 62, p. 699-725.

Macsotay, O. (2005) The Humboldt channel:Early Pleistocene extensional graben through eastern Venezuela and Trinidad, Geological Society of Jamaica. Caribbean Journal of Earth Science, 39: 83-91

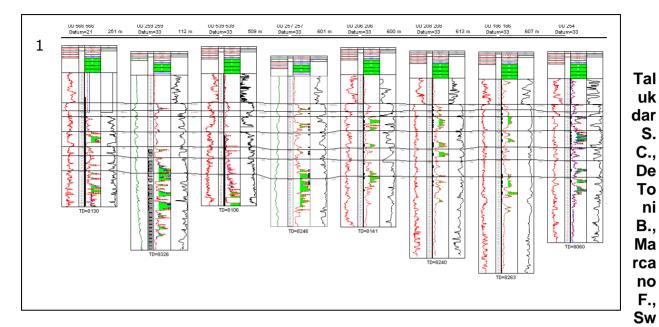
Mann, P and Burke, K., (1984) Neotectonics of the Caribbean. Review of Geophysical Space and Physics, Vol. 22, p. 309-362.

Mann, **P.**, **ed.**, (1999) Caribbean Basins: Sedimentary basins of the world. K Hsu series editor, Vol. 4, p. 419-476.

Marcha, I. "Paleogene of la Concepción Field (Maracaibo Basin, Venezuela): Transition From Andes and to Caribbean Active Margin". Tesis en opción al grado de Master (inédita), Rice University, Houston-Texas, 2004.

Maze, W. B. (1984) Jurassic La Quinta formation in the Sierra de Perijá, northwestern Venezuela: geology and tectonic environment of red beds and volcanic rocks: Geo. Soc. Am. Mem. 162, p. 263-282

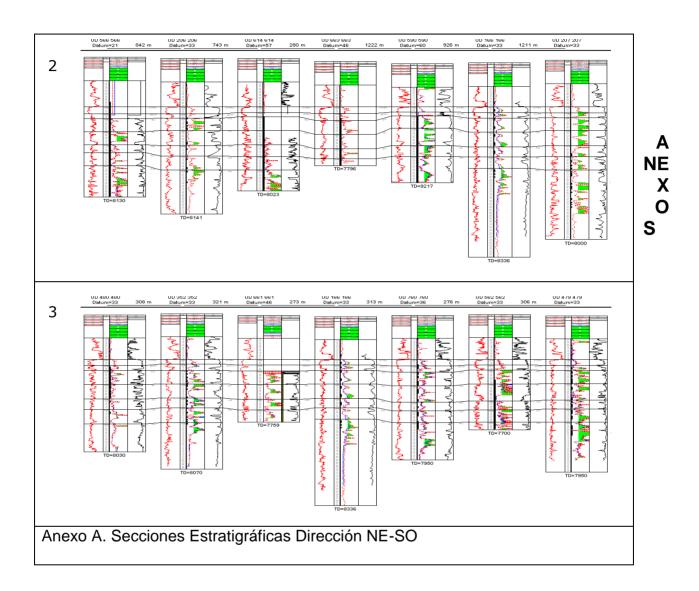
Parnaud, F.; Gou, Y.; Pascual, J. C.; Capello, M. A.; Truskowski, I.; Passalacqua, H. (1995) Stratigraphic synthesis of western Venezuela. Petroleum Basins of South America (AAPG MEM N° 62), p. 681-698,

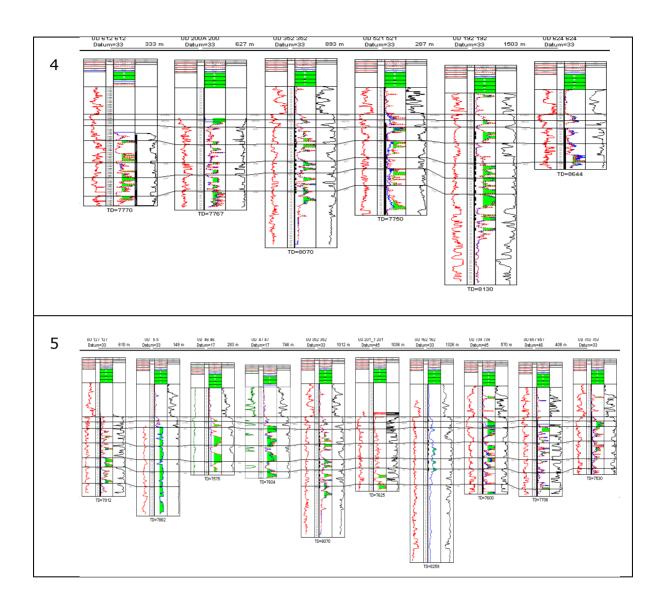

Renz, O. (1981) Aspects of Mid-Cretaceous regional geology Venezuela. Acad. Press, London, United Kingdom, p. 197-220

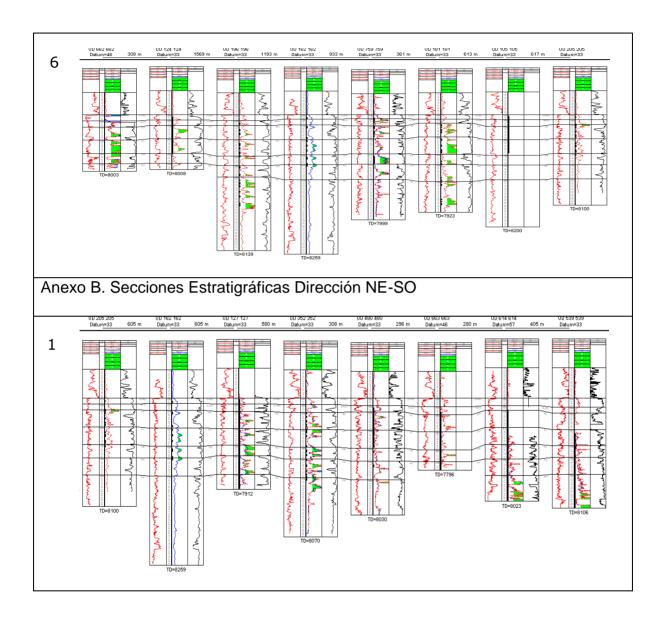
Schubert, C., (1982) Neotectonics of Bocono fault. Western Venezuela. Tectonophysics Vol.85, p. 205-220.

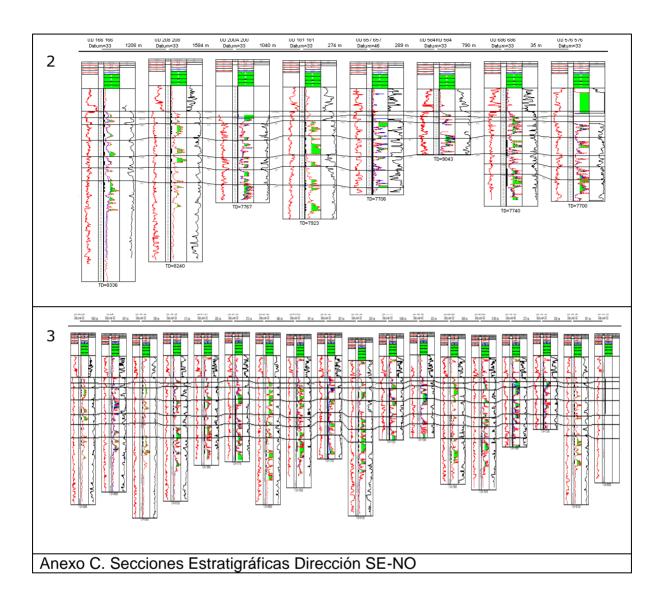
Stephan, J.F. (1977) El contacto Cadena Caribe-Andes Merideños entre Carora y El Tocuyo (Edo. Lara): Observaciones sobre el estilo y la edad de las deformaciones cenozoicas en el Occidente Venezolano. Memorias del V Congreso Geológico Venezolano, Vol. 4, p. 358-418.

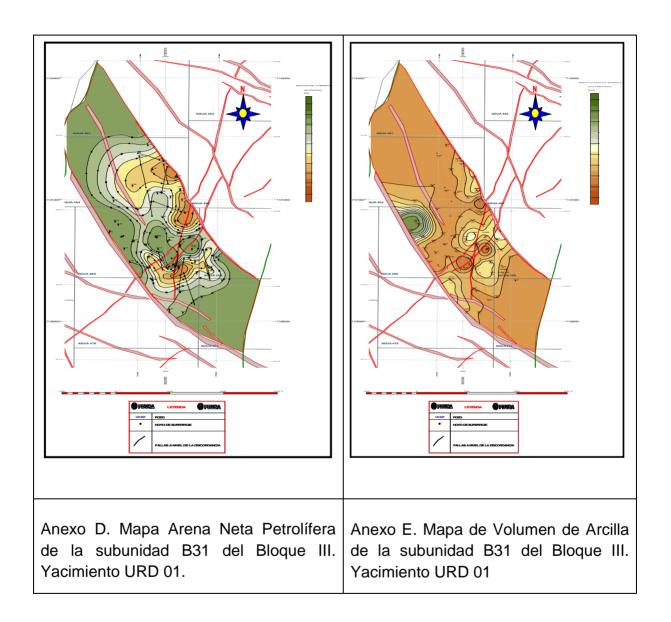
Talukdar S. and Marcano F. (1994). Petroleum system of the Maracaibo Basin, Venezuela, in Magoon L.B. and Dow W.G., eds,. 1994. The Petroleum System – For Source to Trap: Tulsa, AAPG Memoir 60, pp. 463-481.

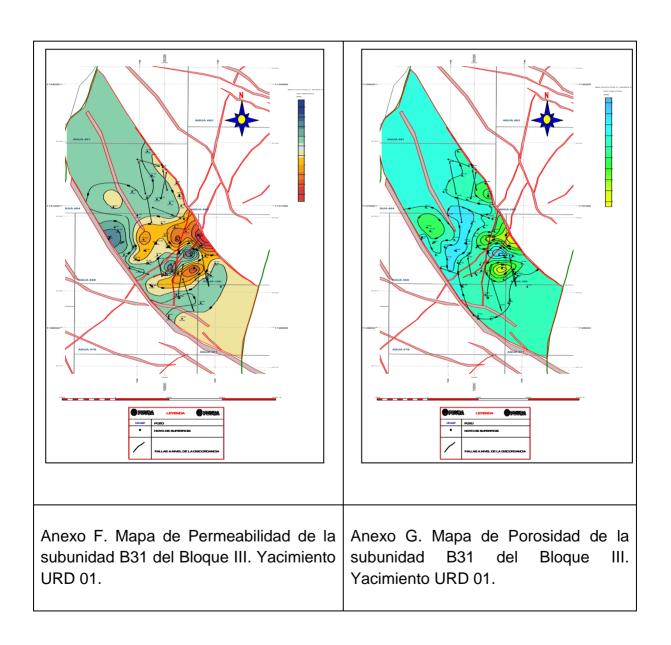

Talukdar S.; Gallango O. y Ruggiero A. (1985). Formaciones La Luna y Querecual de Venezuela como rocas madres de petróleo: Caracas, Memorias del VI Congreso Geológico Venezolano, octubre 1985, Tomo VI, pp. 3606-3642.

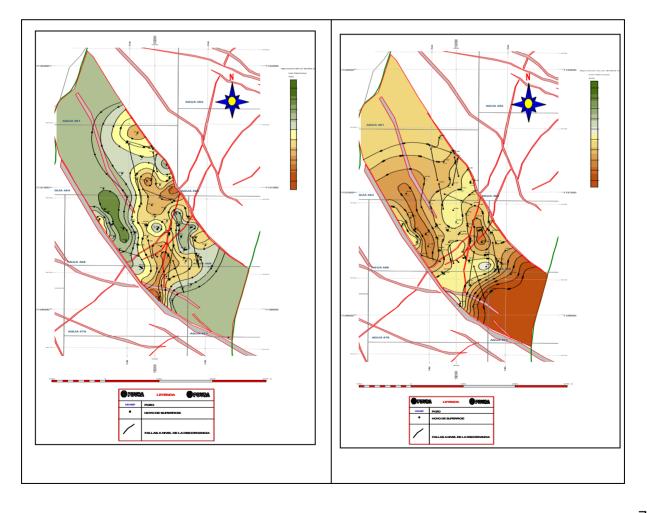


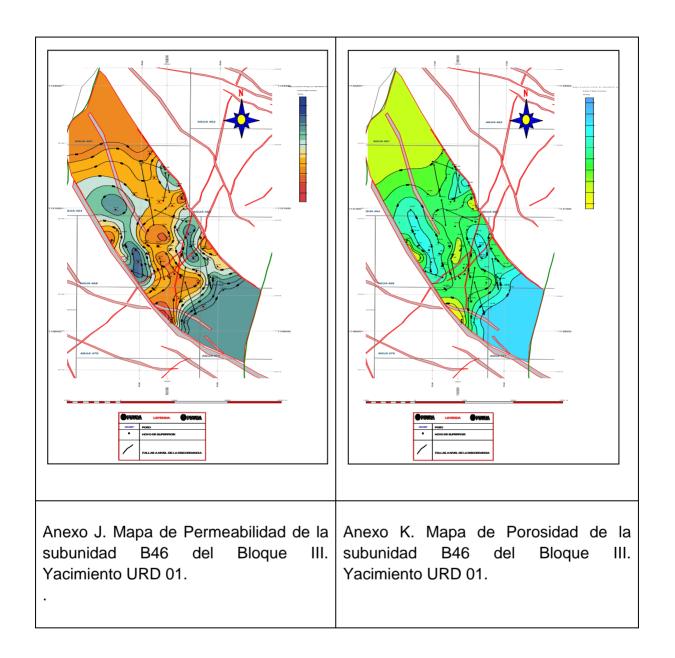

uk dar S. C., De To ni В., Ma rca no F., Sw ee ne у, an d Ra ng el A. (19 93)

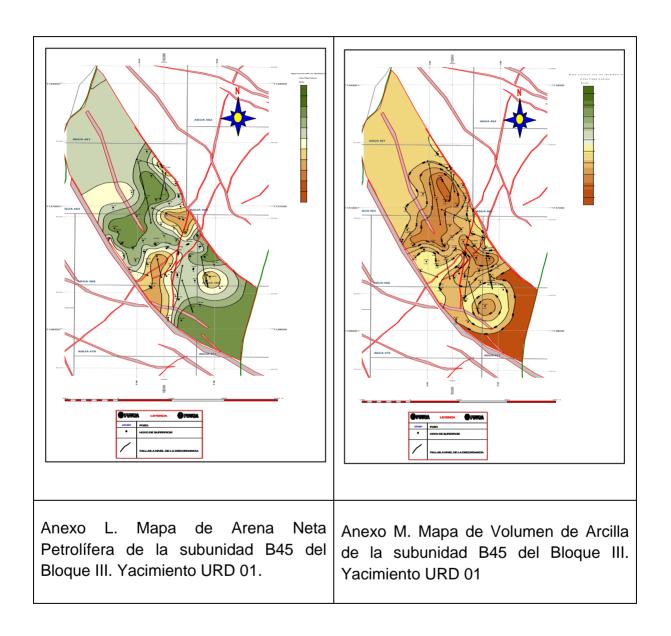

Up

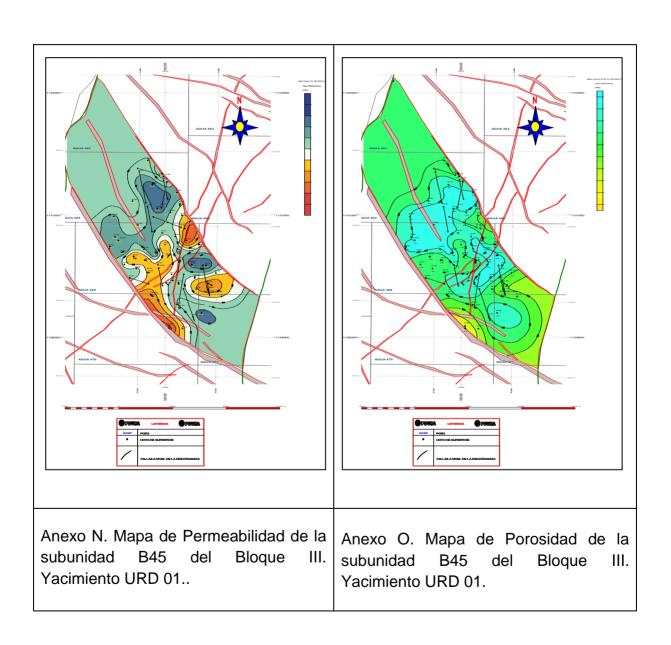

per Cretaceous Source Rocks of Northern South America. Abstract: American Association of Petroleum Geologists Bulletin., Vol. 77, pp. 351.











Anexo H. Mapa de Arena Neta Petrolífera de la subunidad B46 del Bloque III. Yacimiento URD 01.

Anexo I. Mapa de Volumen de Arcilla de la subunidad B46 del Bloque III. Yacimiento URD 01

